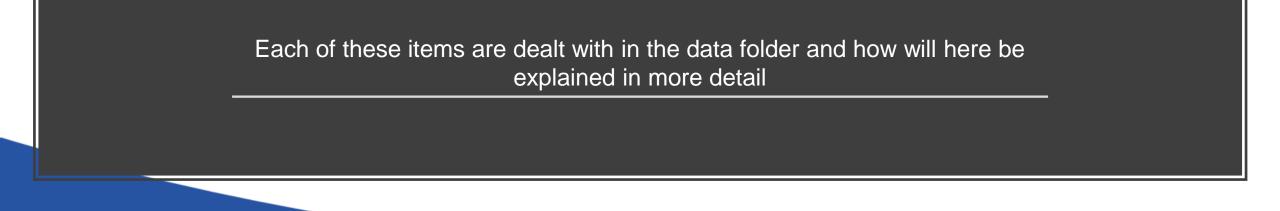

## The GLOBIOM data folder


Explanations, helpful commands and adaptations



#### Everything that enters the model before the first calibration







### The O\_execute\_batch file

Compilation of all data - e.g. when new region structure established.

\$## Comparison of the second of the sec

| * FAO Population                    |                                           |                                 |                                         |                                 |
|-------------------------------------|-------------------------------------------|---------------------------------|-----------------------------------------|---------------------------------|
| execute_abort("gams                 | 1_compile_pop.gms                         | \$env\$                         |                                         | CDir=PopFAO");                  |
| * FAO Crop Data                     |                                           |                                 |                                         |                                 |
|                                     | 1_comp_faoPRODdata.gms                    | \$env\$                         |                                         | CDir=CropsFAO");                |
|                                     | 2_comp_faoSUAdata.gms                     | \$env\$                         |                                         | CDir=CropsFAO");                |
|                                     | 3_comp_faoPRICEdata.gms                   | \$env\$                         |                                         | CDir=CropsFAO");                |
|                                     | 5_comp_faoFBSdata.gms                     | \$env\$                         | -s t%X%a5                               | CDir=CropsFAO");                |
|                                     | 5b_foodprojection.gms                     | <pre>%env% -r t%X%a5</pre>      |                                         | CDir=CropsFAO");                |
|                                     | 6_comp_faoLANDdata.gms                    | \$env\$                         |                                         | CDir=CropsFAO");                |
| execute_abort("gams                 | X_calc_yieldgrowthrate.gms                | \$env\$                         |                                         | CDir=CropsFAO");                |
| execute_abort("gams                 |                                           | \$env\$                         | -s t%X%al                               | CDir=CropsFAO_new");            |
| execute_abort("gams                 |                                           | <pre>%env% -r t%X%al</pre>      |                                         | CDir=CropsFAO_new");            |
| execute_abort("gams                 | 2_compile_osd.gms                         | <pre>%env% -r t%X%al</pre>      |                                         | CDir=CropsFA0_new");            |
| * FAO Live Data                     |                                           |                                 |                                         |                                 |
| execute_abort("gams                 |                                           | \$env\$                         | -s texeal                               | CDir=LiveFAO");                 |
|                                     | 2_comp_liveFBSdata.gms                    | <pre>%env% -r t%X%al</pre>      | -s t%X%a2fbs                            | CDir=LiveFAO");                 |
|                                     | 2_comp_liveSUAdata.gms                    | <pre>%env% -r t%X%al</pre>      | -s t&X&a2sua                            | CDir=LiveFAO");                 |
|                                     | <pre>3_comp_livePricedataSUA.gms</pre>    | <pre>%env% -r t%X%a2sua</pre>   | -s t&X&a3sua                            | CDir=LiveFAO");                 |
| -                                   | <pre>3_comp_livePricedataSUAFBS.gms</pre> | <pre>%env% -r t%X%a2sua</pre>   | -s t&X&a3                               | CDir=LiveFAO");                 |
|                                     | l_loaddataAnimals.gms                     | Senv?                           | -s t%X%al_anim                          | CDir=LiveFAO");                 |
| execute_abort("gams                 | <pre>4_comp_liveSTOCKdata.gms</pre>       | <pre>%env% -r t%X%al_anim</pre> | -s t%X%a4                               | CDir=LiveFAO");                 |
| execute_abort("gams                 | 1_loaddata.gms                            | \$env\$                         | -s t%X%al                               | <pre>CDir=LiveFA0_new");</pre>  |
| execute_abort("gams                 |                                           | <pre>%env% -r t%X%al</pre>      | 5 - C - C - C - C - C - C - C - C - C - | CDir=LiveFAO_new");             |
| execute_abort("gams                 | 2_compile_y.gms                           | %env% -r t%X%al                 |                                         | CDir=LiveFAO_new");             |
| * Live ILRI                         |                                           |                                 |                                         |                                 |
| execute_abort("gams                 |                                           | \$env\$                         |                                         | CDir=LiveILRIsimU");            |
| execute_abort("gams                 | 0_executebatch.gms                        | \$env\$                         |                                         | CDir=LiveILRI //name=default"); |
| * Forest FAC                        |                                           |                                 |                                         |                                 |
| execute_abort("gams                 | 1_compile.gms                             | \$env\$                         |                                         | CDir=ForestFA0");               |
| execute_abort("gams                 | 1_compile_2010.gms                        | \$env\$                         |                                         | CDir=ForestFAO");               |
| * Elasticities USDA                 |                                           |                                 |                                         |                                 |
| execute_abort("gams                 | 1_comp_ElaUSDA.gms                        | \$env\$                         |                                         | CDir=Elasticities%X%USDA");     |
| execute_abort("gams                 | 1_comp_ElaUSDA_2005.gms                   | \$env\$                         |                                         | CDir=Elasticities%X%USDA");     |
| · FAO FBS new data :                | for demand - HV 16.02.2012                |                                 |                                         |                                 |
| execute abort ("gams                | 1 comp FAO FBSdata hv.gms                 | \$env\$                         | -s t%X%sav                              | CDir=FBS FAO");                 |
| <pre>'execute_abort("gam:</pre>     | s 2_comp_FAO_hist_regress.gms             | Senvi -r tiXisav                |                                         | CDir=FBS_FAO");                 |
| * Income elasticitie                | es projections - HV 16.02.2012            |                                 |                                         |                                 |
| <pre>'execute_abort("gam!</pre>     | s 1_compile_inc_elast.gms                 | \$env\$                         |                                         | CDir=Demand_2100 //opt=FAO");   |
| < Water                             |                                           |                                 |                                         |                                 |
| execute_abort("gams                 | l_comp_klumdata.gms                       | \$env\$                         |                                         | CDir=Water");                   |
|                                     | l_comp_irriland.gms                       | %env%                           |                                         | CDir=irri_land_FAO");           |
| * Emissions<br>execute abort ("gama | 1 load emissiondata.gms                   | Senvs                           | -s t%X%al                               | <pre>CDir=Emissions");</pre>    |
|                                     | 2_calc_emissions.gms                      | <pre>%env% -r t%X%al</pre>      | -0 030301                               | CDir=Emissions"):               |
| evectre_apore( dama                 | ~_care_emissions.yms                      | TENVS -1 CEASOL                 |                                         | CPIL-Emildalona );              |

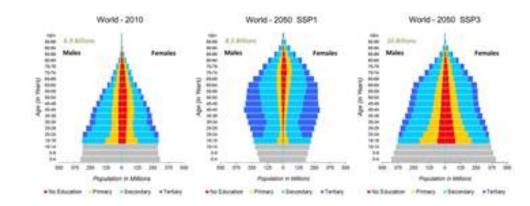
### Compilation of external data in GLOBIOM-compatible parameters

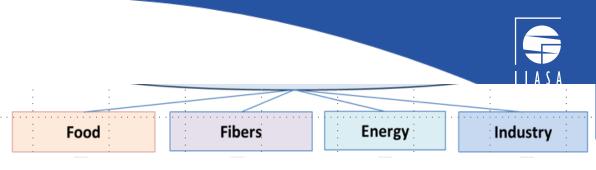
#### Processing of the data to ensure a spatiallyexplicit year-2000 consistent picture

| * Final compilation part 1                   |                            |              |                    |
|----------------------------------------------|----------------------------|--------------|--------------------|
| execute_abort("gams l_compiledata.gms        | %env%                      | -s t%X%al"); |                    |
| execute_abort("gams 1_extractdata.gms        | <pre>%env% -r t%X%al</pre> | ");          |                    |
| execute_abort("gams 2_comp_cropdata.gms      | <pre>%env% -r t%X%al</pre> | -s t%X%a2"); |                    |
| execute_abort("gams 2_cons_croplnd.gms       | <pre>%env% -r t%X%a2</pre> | -s t%X%a3"); |                    |
| execute_abort("gams 2_extract_cropdata.gms   | <pre>%env% -r t%X%a3</pre> | ");          |                    |
| * Grass productivity                         |                            |              |                    |
| execute_abort("gams l_loaddata.gms           | %env%                      |              | CDir=Grass_SimU"); |
| * Final compilation part 2                   |                            |              |                    |
| execute_abort("gams 3_comp_feeddata.gms      | %env%                      | -s t%X%a4"); |                    |
| execute_abort("gams 3_cons_grslnd.gms        | <pre>%env% -r t%X%a4</pre> | ");          |                    |
| execute_abort("gams 3_comp_livedata.gms      | <pre>%env% -r t%X%a4</pre> | ");          |                    |
| execute_abort("gams 4_comp_fordata.gms       | <pre>%env% -r t%X%al</pre> | -s t%X%a5"); |                    |
| execute_abort("gams 4_mai4myk.gms            | <pre>%env% -r t%X%a5</pre> | -s t%X%a6"); |                    |
| execute_abort("gams 4_cons_forest.gms        | <pre>%env% -r t%X%a6</pre> | -s t%X%a7"); |                    |
| execute_abort("gams 5_cons_othercropland.gms | <pre>%env% -r t%X%a7</pre> | ");          |                    |
| execute_abort("gams 6_comp_srpdata.gms       | <pre>%env% -r t%X%al</pre> | -s t%X%a8"); |                    |
| execute_abort("gams 7_comp_gibbsdata.gms     | <pre>%env% -r t%X%al</pre> | -s t%X%a9"); |                    |
| execute_abort("gams 8_comp_trade.gms         | <pre>%env% -r t%X%al</pre> | ");          |                    |

### Exogenous drivers




\* FAO Population
execute\_abort("gams l\_compile\_pop.gms


Compilation of external data in GLOBIOM-compatible parameters

#### Relevant parameters:

• POPTOT\_DATA(ANYREGION) Population in 1000 persons

#### Other exogenous parameters: GDP and consumer preferences





## Demand, prices and trade

| execute_abort("gams | 2_comp_faoSUAdata.gms   |
|---------------------|-------------------------|
| execute_abort("gams | 3_comp_faoPRICEdata.gms |
| execute_abort("gams | 5_comp_faoFBSdata.gms   |
| execute_abort("gams | 5b_foodprojection.gms   |

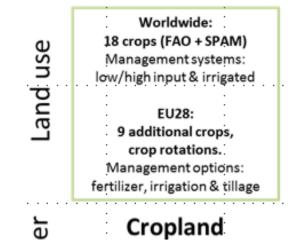
\* Elasticities USDA execute\_abort("gams 1\_comp\_ElaUSDA.gms execute\_abort("gams 1\_comp\_ElaUSDA\_2005.gms Production balance by country, product and year

Producer price (US \$/tonne) from FAO

Calorie consumption and production (kcal per capita per day)

FAO food balance sheets

price elasticity of demand obtained from USDA by product and by region


| Parameter name   | Parameter explanation                 |
|------------------|---------------------------------------|
|                  | Production balance by country,        |
| SUADATA_CY       | product and year                      |
| SUADATA_AVG      | Average production balance            |
|                  | Producer price (US \$/tonne) from     |
| PRICEDATA_CROPS  | FAO                                   |
|                  | Producer price (US \$/tonne) from     |
| PRICEDATA_C      | FAO, averaged over the years          |
| FoodConsForecast | relative change in per capita calorie |
| det_RelChng      | consumption                           |

| Parameter name      | Parameter explanation |
|---------------------|-----------------------|
|                     | Price elasticity of   |
| DemandPriceEla_USDA | demand                |
| DemandIncomeEla_USD | Income elasticity of  |
| A                   | demand                |

### Crops

\* FAO Crop Data execute\_abort("gams 1\_comp\_faoPRODdata.gms execute\_abort("gams X\_calc\_yieldgrowthrate.gms Production data for crops from FAO (t) Average production data for crops from FAO (t) Relative change of yields compared to 2000 calculated based on linear regression 1980-2006  $\rightarrow$ To compute the factor of technological change

| Parameter name     | Parameter explanation                                                                      |
|--------------------|--------------------------------------------------------------------------------------------|
| PRODDATA_CY        | Production data for crops from FAO (t)                                                     |
| PRODDATA_C         | Average production data for crops from FAO (t)                                             |
| HistYieldChng_Data | Relative change of yields compared to 2000 calculated based on linear regression 1980-2006 |



### Landcover

execute\_abort("gams 6\_comp\_faoLANDdata.gms

Land by land cover from FaoStat

| Parameter name | Parameter explanation             |
|----------------|-----------------------------------|
|                | Arable land, temporary and        |
|                | permanent grassland, forest area, |
| LandFAO_Data   | other land                        |

| Land use | Worldwide:<br>18 crops (FAO + SPAM)<br>Management systems:<br>low/high input & irrigated<br>EU28:<br>9 additional crops,<br>crop rotations.<br>Management options:<br>fertilizer, irrigation & tillage | 7 animals<br>(FAO + Gridded livestock)<br>Cattle & Buffalo<br>Sheep & Goat<br>Pig<br>Poultry<br>8 different systems |  | Perennial crops<br>Short rotation coppice<br>Conversion technologies<br>First generation biofuels<br>Second generation<br>biofuels<br>Biomass power plants | Downscaled FAO FRA at<br>grid level<br>Area<br>Carbon stock<br>Age<br>Tree size<br>Species<br>Rotation time<br>Thinning |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|

### Livestock data

\* FAO Live Data

F

A

R

Load in specific livestock data and processed products Load in specific sets and maps for all types of livestock

А execute abort ("gams 2 comp liveSUAdata.gms execute abort ("gams 3 comp livePricedataSUA.gms  $\bigcirc$ execute abort ("gams 3 comp livePricedataSUAFBS.gms S execute abort ("gams 1 loaddataAnimals.gms Т execute abort ("gams 4\_comp\_liveSTOCKdata.gms

execute\_abort("gams 2\_comp\_liveFBSdata.gms

execute abort ("gams 1 loaddata.gms execute\_abort("gams 2\_compile.gms execute abort ("gams 2 compile y.gms

execute abort ("gams 1 loaddata.gms

Load-in all FaoStat data for livestock

SUA data for animal production

|                 | Calorie consumption per live  |
|-----------------|-------------------------------|
| FBSNUT_DATA_DET | product                       |
| PRICEDATASUA_A  | Price data for crops          |
| PRICEDATA_A     | Price data for crops          |
| SUALIVEANIMALS  | SUA data for livestock STOCKs |
| DATA            | and Producing Animals         |
|                 | Data for livestock STOCKs and |
| LIVENUMBER_FAO  | Producing Animals             |
|                 | Data for livestock STOCKs and |
| LIVENUMBER_FAO  | Producing Animals             |

RUMINANT **Digestibility model**  $\rightarrow$ Feed intake Animal production ) → GHG emissions 7 animals (FAO + Gridded livestock) Cattle & Buffalo Sheep & Goat Pig Poultry 8 different systems

\* Live ILRI execute abort("gams 1 loadliveSimU.gms execute\_abort("gams 0\_executebatch.gms

| PIGS | Pigs                           |                    |                                                |
|------|--------------------------------|--------------------|------------------------------------------------|
| BOVD | Bovine - dairy                 |                    |                                                |
| BOVO | Bovine - other                 |                    |                                                |
| BOVF | Bovine - Followers             |                    |                                                |
| SGTD | Sheep and goats - dairy        |                    |                                                |
| SGTO | Sheep and goats - other        | Livestock ILRI     |                                                |
| SGTF | Sheep and goats -<br>followers | LIVENUMBER SIMU    | Full spatial resolution -<br>livestock numbers |
| PTRB | poultry broilers               | hivenonibilit_bino | 200x200 km grid - livestock                    |
| PTRH | poultry laying hens            | LIVENUMBER LUID    | numbers                                        |
| PTRX | poultry mixed                  |                    |                                                |

### Forest data

\* Forest FAO
execute\_abort("gams l\_compile.gms
execute\_abort("gams l\_compile\_2010.gms

Load foreststat data from FAO on production, consumption, import and export.

Load data from ForesSTAT\_DATA with products

Allocate woody biomass to biomass for pulp and paper and biomass for sawnwood

Calculate trade of forest products by minimizing the difference with domestic consumption.

Produces the table ForesSTAT\_DATA

| ForesSTAT_DATA | Forestry data from FAO (2000)    |
|----------------|----------------------------------|
|                | Sawlogs and Pulplogs in 1000     |
| IW_Biomass     | m3                               |
| SW_Biomass     | Sawlogs in 1000 m3               |
| PW_Biomass     | Pulplogs in 1000 m3              |
|                | Other Indust Roundwood in 1000   |
| OW_Biomass     | m3                               |
| FW_Biomass     | Wood Fuel in 1000 m3             |
| SawnWood       | SawnWood in 1000 m3              |
| PlyWood        | Plywood+Veneer in 1000 m3        |
|                | Particleboard+Fiberboard in 1000 |
| Fiberboard     | m3                               |
|                | Chemical Pulp+Semi Chemical      |
| ChemPulp       | pulp in 1000 t                   |
| MechPulp       | Mechanical Pulp in 1000 t        |
|                | Chips_and_particles+Wood_resid   |
| Woodchips      | ues in 1000 m3                   |
| Woodpellets    | Woodpellets in 1000 t (2012)     |

### Other

#### \* Water

execute\_abort("gams l\_comp\_klumdata.gms
execute\_abort("gams l\_comp\_irriland.gms

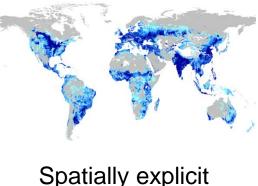
#### \* Emissions

execute\_abort("gams l\_load\_emissiondata.gms
execute\_abort("gams 2\_calc\_emissions.gms

Calculate water demand and yields under irrigation Report emission factors

| Parameter name  | Parameter explanation                                          |
|-----------------|----------------------------------------------------------------|
| YIELD_WATER     | Yields depending on irrigation                                 |
| YIELD_WATERCOEF | Yield coef depending on irrigation                             |
| DEMAND_WATER    | Water requirements by countries                                |
| IRRIG_COST      | Irrigation cost                                                |
| IrriLand_FAO_Y  | irrigated area in 1000 ha                                      |
| IrriLand_FAO    | average irrigated area over 1998-<br>2002                      |
| Animal_Data_EPA | Total Non-Carbon Emissions in<br>Million Metric CO2-Equivalent |
| CROP_DATA_GHG   | Crop Carbon Dioxide Emissions<br>in tons CO2 per hectare       |

### Obtained data for all major items at national or IASA regional level

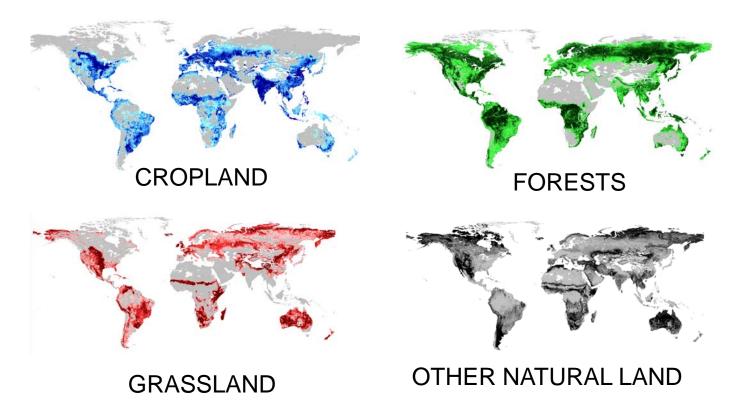

| But not spatially | explicit |
|-------------------|----------|
|-------------------|----------|

... No potentials taken into account





Sets Anyregion Allcountry




Sets (Allcolrow, AEZClass, Alticlass, Slpclass, Soilclass)

Spatially explicit

### Spatially-explicit land cover

### Initial land cover (GLC 2000)



Landcover loaded in in the file: execute\_abort("gams 2\_comp\_cropdata.gms

#### Consists of the following main landcovers

| LC_TYPES | LC_TYPES_EPIC |
|----------|---------------|
| CrpLnd   | CrpLnd        |
| WetLnd   | WetLnd        |
| NotRel   | NotRel        |
| OagLnd   | OthAgri       |
| OagLnd   | OthCrpLnd     |
| GrsLnd   | Grass         |
| NatLnd   | OthNatLnd     |

#### And the following main parameters

| 0                   |                                                                    |
|---------------------|--------------------------------------------------------------------|
| Parameter name      | Parameter explanation                                              |
| _ANDCOVER_INIT      | Initial land cover (1000 ha)                                       |
|                     | Initial land cover adjusted for<br>consistency with FAO crop areas |
| _ANDCOVER_INIT_SIMU | Initial land cover                                                 |
|                     |                                                                    |



### Spatially-explicit crop data

#### Evaporation and Transpiration Rain, Snow, Chemicals Subsurface Flow Surface Flow Below Root Zone

**EPIC** model

#### execute\_abort("gams 2\_comp\_cropdata.gms

Parameter crop\_data

| Parameter name | Parameter explanation                                          |
|----------------|----------------------------------------------------------------|
| Basearea       | SPAM data from IFPRI                                           |
| CROPS          | EPIC modelled crops                                            |
| WATER          | Water requirements from different irrigation systems from EPIC |
| COST           | Based on nitrogen and phosphorus use from EPIC                 |

- Crop yield (tonne/ha)
- Input use (kg/ha)
- Water use
- Nitrogen emissions

### Spatially-explicit feed

Barl BeaD Cass ChkP Corn Cott Gnut Mill Pota Rape Rice Soya Srgh SugC Sunf SwPo

Whea

0.85



execute\_abort("gams 3\_comp\_feeddata.gms
execute\_abort("gams 3\_cons\_grslnd.gms
execute\_abort("gams 3\_comp\_livedata.gms

#### Declaring of the ILRI data for livestock numbers, livestock data and biomass values

|                     | Two                                 | feed sources                            |                       |                                                                                        |
|---------------------|-------------------------------------|-----------------------------------------|-----------------------|----------------------------------------------------------------------------------------|
|                     |                                     |                                         | Parameter name        | Parameter explanation                                                                  |
|                     |                                     |                                         | GRAS_DATA             | Grassland productivity, grassland reserve and area                                     |
|                     | From crops                          | Grasslands                              | STOVER_DATA           | Reserve Difference between the supply and demand for stover to make base year feasible |
|                     |                                     |                                         | STOVER_LU_DATA        | Difference between the supply and demand for stover to make base year feasible         |
| 0.89<br>0.9         | $\leftarrow$ Crops that can be used | Mapping grass yields                    | GRAINRESERVE_DAT<br>A | Difference between the supply and demand for<br>concentrate aggregates                 |
| 0.21                | as feed stuff in their dry-         | to regional levels                      | LIVENUMBER            | Livestock numbers from ILRI in 1000 TLU                                                |
| 0.9<br>0.85<br>0.91 | matter ratio                        | based on inputs from EPIC and Rich data |                       |                                                                                        |
| 0.91                | If the feed quantity from           |                                         | Parameter name        | Parameter explanation                                                                  |
| 0.89                | the SUA data                        |                                         | LIVE_DATA             | Products, feed requirements, GHG, Manure and N_Excretion in tonnes/year                |
| 0.91                |                                     |                                         | LIVE_DATA_woRESER     | VE Feed requirements in tonnes/year                                                    |
| 0.85<br>0.9         | <                                   |                                         | LIVEDEMAGGS_DATA      | Share of individual animal products in the FBS aggregates                              |
| 0.89                | LIVENUMBER X                        |                                         | ·                     |                                                                                        |
| 0.25<br>0.94        | LIVEDIET                            |                                         |                       |                                                                                        |
| 0.2                 | $\rightarrow$ Grainreserve          |                                         |                       |                                                                                        |



execute\_abort("gams 4\_comp\_fordata.gms
execute\_abort("gams 4\_mai4myk.gms
execute\_abort("gams 4\_cons\_forest.gms

### Spatially-explicit forestry data

#### FORESTS

- Sawn wood (m3/ha)
- Fuel wood (m3/ha)
- Pulp wood (m3/ha)



#### \$include data\_g4mMNG\_SIMU\_cor.gms

#### TABLE DATAG4M\_MNG\_SIMU\_COR(ALLCOUNTRY, AllColRow, SlpClass, ForMngt\_TypeAll, ForMngt\_ItemAll) Management data from G4M (in tC)

| A | RotationTime | Rotation Time [Years]                                                |      |
|---|--------------|----------------------------------------------------------------------|------|
| A | Increment    | Annual increment [tC per ha per Year]                                | PÆ   |
| A | HarvLoss     | Harvest losses (Not usable annual increment) [tC per ha per Year]    |      |
| A | HarvWood     | Total annual usable wood = increment - harvLoos [tC per ha per Year] | Ba   |
| A | SavnWood     | Annual havestable Sawnwood [tC per ha per Year]                      | fo   |
| A | HarvCost     | Harvesting costs [\$ per tC]                                         | 10   |
| A | ForestWood   | Average aboveground Wood biomass at this rotation time [tC per ha]   | Ha   |
| A | Cbelow       | Forest Below ground biomass at current sitation [tC per ha]          | 1 10 |
| A | Cdead        | Foret Dead biomass at current sitation [tC per ha]                   | to   |
| A | Clitter      | Forest Litter biomass at current sitation [tC per ha]                |      |
| A | Csoil        | Forest Soil Carbon at current sitation [tC per ha]                   | Bi   |

PARAMETER FOREST\_DATA Basearea allocated based on a share in forests Harvest wood and sawnwood converted

BIOMAS

 $\rightarrow$ 

÷

Global Forest model

Harvestable wood

Harvesting costs

Downscaled FAO FRA at

grid level

Area Carbon stock

Age Tree size Species Rotation time Thinning

Managed forest

to m3, costs converted to USD/m3 Biomass converted to tCO2eq per ha

### Land cover harmonization

execute\_abort("gams 5\_cons\_othercropland.gms

However, the landcover data and productivity data need to be harmonized to ensure a consistent picture at the country level.

#### For cropland

Sum of cropland in the SPAM data doesn't necessarily match the cropland area in the GLCShare2000. Therefore:

- Scaling of basearea and yields of cropdata parameter based on FAOstat
- Adjustments of new cropland area to other landcovers; i.e. more cropland than in initial landcover, take from other land covers

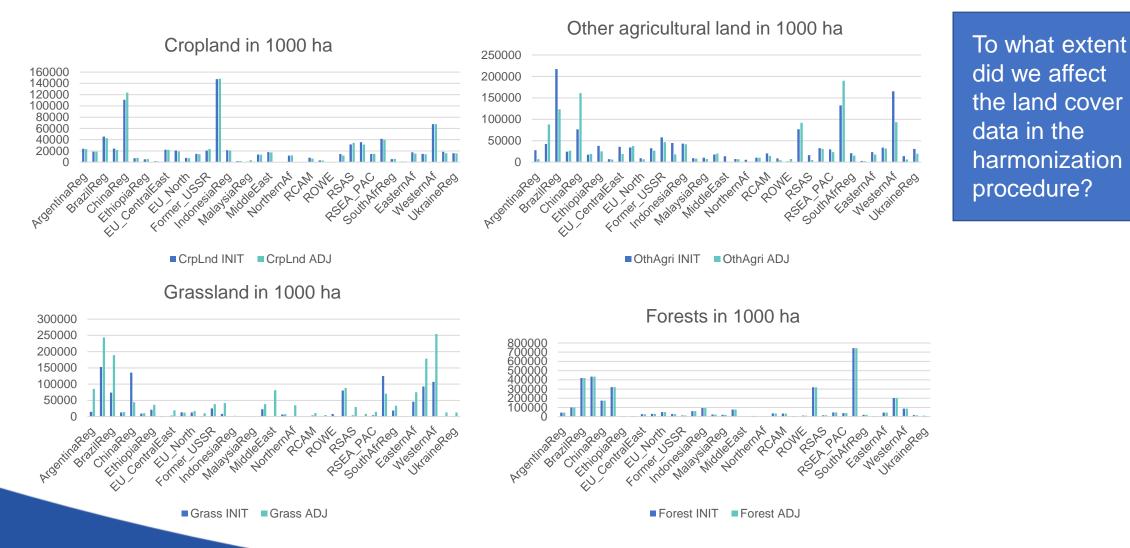
#### For grassland

- What if Grassland > available grassland? → Take away from OthAgri and OthNatLnd → Leads to parameter LANDCOVER\_INIT\_CrpGrsADJ

#### For forest productivity

- What if the basearea x forest yields > available forests? → To the extent possible, away from OthNatLnd → LANDCOVER\_INIT\_CrpGrsADJ
- Other agricultural land adjusted with natural land

#### Leads to the parameter that gets exported to the final data:


LANDCOVER\_INIT\_CrpGrsForOagADJ(ALLCOUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,Aez Class,LC\_TYPES\_EPIC) (1000 ha)

### Land cover harmonization

| GLC2000 land cover<br>classes                        | GLOBIOM land cover<br>classes | GLOBIOM land<br>use classes           | Harmonization with other<br>sources                                                                                                                   |
|------------------------------------------------------|-------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cultivated and managed area,                         | Cropland                      | Cropland                              | IFPRI 18 GLOBIOM-modeled<br>crops distribution maps                                                                                                   |
| Mosaic<br>cropland/tree/other<br>natural vegetation, |                               |                                       | FAO harvested area by region (average 1998-2002)                                                                                                      |
| Mosaic<br>cropland/shrub/grassland                   |                               | Other<br>agricultural<br>land         | Difference between GLC<br>cropland area and 18<br>GLOBIOM modeled crops area                                                                          |
| Herbaceous cover                                     | Grassland                     | Grazed pastures                       | Livestock distribution maps from FAO-ILRI                                                                                                             |
| Shrub cover, sparse<br>herbaceous or sparse          | Other natural land            | Short rotation<br>tree plantations    |                                                                                                                                                       |
| shrub cover                                          |                               | Other natural<br>land                 | Difference between GLC<br>grassland plus other natural<br>land minus grazing<br>requirements area and minus<br>short rotation tree plantation<br>area |
| All forests except tree<br>cover flooded             | Forests                       | Managed<br>forests<br>Natural forests | FAO managed forest area by<br>region (average 1998-2002)<br><i>Difference between GLC</i>                                                             |
|                                                      |                               | waturai iorests                       | Forests and Managed forests area                                                                                                                      |
| 18                                                   | Nam                           | ne - Title                            | 16/10/2020                                                                                                                                            |



### Land cover harmonization



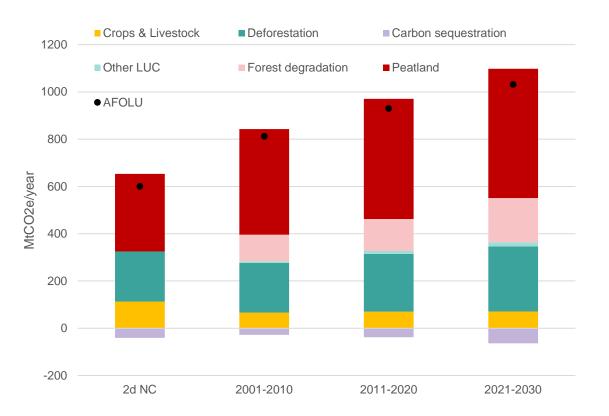
### Spatially-explicit short rotation plantations

#### **PLANTATIONS**

Wood for pulp m3/ha Fuel wood m3/ha Obtained from G4M with the potential area that can be cultivated on natural land, agricultural land, grassland, wetland and forestry and the current area

| Parameter name | Parameter explanation          |
|----------------|--------------------------------|
| SRP_DATA       | Mean annual increment in m3/ha |
|                | Costs in USD/m3                |
|                | GHG sequestration in tCO2/ha   |

### GHG calculation


GHG emissions from:

- Use of cropland from EPIC
- Livestock keeping from ILRI data
- Below and above ground biomass of forestry products from G4M
- Above and below ground living biomass related to land cover from Reusch & Gibbs

Parameter: CarbonRueschGibbs





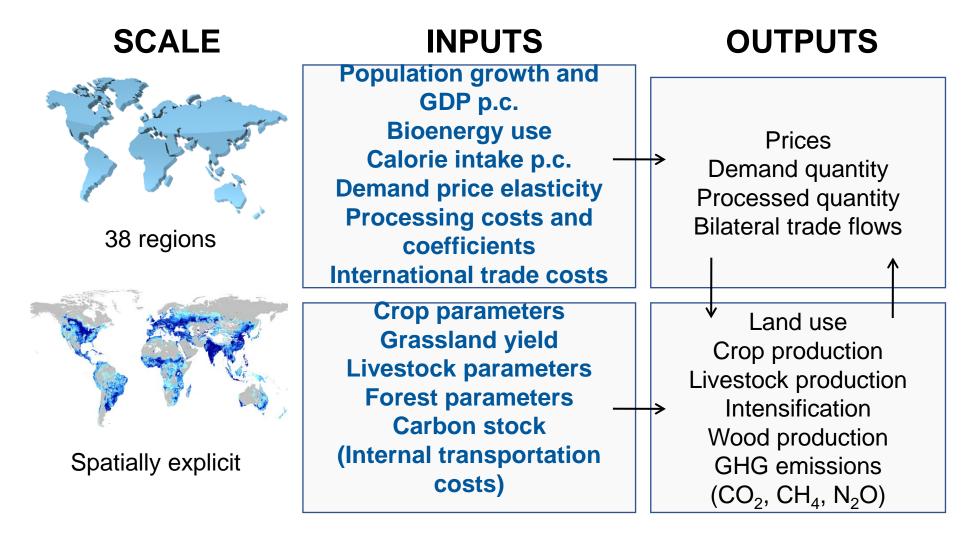


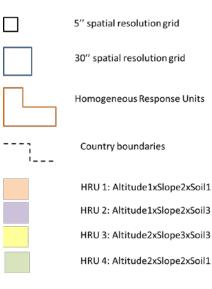


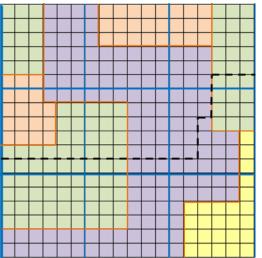
### Trade

execute\_abort("gams 8\_comp\_trade.gms

Load-in trade-data, tariff-data and price data


Correct trade-data with the tradeable volume from division between production and consumption


Trade takes place at the regional level


Trade With trade flows between regions



### Main inputs and outputs from GLOBIOM







# Exercise 1: change the countries'

#### **MODEL Folder**

decl\_Rset → Select your region as a SIMU\_COUNTRY/HRUN\_COUNTRY instead of an LUID\_COUNTRY

Choose the regions resolution by defining these sets: HRUN\_Country  $\rightarrow$  At Homogenous response unit level SIMU\_country  $\rightarrow$  At 50x50 km grid (*colrow*) + AEZ level LUID\_country  $\rightarrow$  At 200x200 km level

#### **DATA Folder**

All spatial explicit data that we have covered previously

- **Data**/2\_comp\_cropdata
- Data/3\_comp\_feeddata

Search for these files by selecting HRUN.

#### **MODEL Folder**

Recalc\_resolution: Based on the changes you made all parameters are now on the level of a different grid.



# Exercise 2: Introduce a new country as a separate region

How would we want to refer to the new group of regions that includes your region?

 $\rightarrow$  Here I say REGION38

In decl\_regionset.gms

| REGION38(ANYREGION)                            | REGION37(ANYREGION)                            | EthiopiaReg                                                                                        |
|------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|
| REGION38_COUNTRY_MAP(A<br>NYREGION,ALLCOUNTRY) | REGION37_COUNTRY_MAP(ANYREGIO<br>N,ALLCOUNTRY) | EthiopiaReg .Ethiopia                                                                              |
| GGI_REGION38_MAP(ANYRE<br>GION,ANYREGION)      | GGI_REGION37_MAP(ANYREGION,ANY<br>REGION)      | SubSaharanAfrica .EthiopiaReg                                                                      |
| POLESMACROREG_MAP(ALL<br>POLESREG,ANYREGION)   |                                                | SSAFp. (CongoBasin, SouthAfrReg,<br>SubSaharanAfr, EthiopiaReg)                                    |
| POLESREG_MAP(ALLPOLES<br>REG,ANYREGION)        |                                                | SSAFp . (CongoBasin, SouthAfrReg, SubSaharanAfr,<br>EasternAf, SouthernAf, WesternAf, EthiopiaReg) |
| NATGRS_ALLOWED(ANYREG<br>ION)                  |                                                | EthiopiaReg                                                                                        |

Decl\_regionset\_newfao.gms adapted in the same way



#### Create new mappings where Region37 is adapted to Region38 search

| Sets_region_a<br>g.gms              | REGION_AG_MAP(REGION_AG,AN<br>YREGION)              | SSA . (SouthAfrReg,<br>CongoBasin, EasternAf,<br>SouthernAf, WesternAf,<br>EthiopiaReg)                                        | SSA . (SouthAfrReg,<br>CongoBasin, EasternAf,<br>SouthernAf, WesternAf,<br>EthiopiaReg)                                                     |
|-------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                                                     | WLD . (SET.REGION37)                                                                                                           | WLD . (SET.REGION38)                                                                                                                        |
| Sets_region_a<br>gmip.gms           | REGION_AG_MAP(REGION_AG,AN<br>YREGION)              | <pre>AME .(CongoBasin,<br/>EasternAf, SouthernAf,<br/>WesternAf, SouthAfrReg,<br/>NorthernAf, MiddleEast,<br/>TurkeyReg)</pre> | <pre>AME .(CongoBasin,<br/>EasternAf, SouthernAf,<br/>WesternAf, SouthAfrReg,<br/>NorthernAf, MiddleEast,<br/>TurkeyReg, EthiopiaReg)</pre> |
|                                     |                                                     | WLD . (SET.REGION37)                                                                                                           | WLD .(SET.REGION38)                                                                                                                         |
| Sets_region_p<br>nas.gms            | REGION_AG_MAP(REGION_AG,AN<br>YREGION)              | SubSaharanAfr<br>.(SouthAfrReg, CongoBasin,<br>EasternAf, SouthernAf,<br>WesternAf)                                            | SubSaharanAfr<br>.(SouthAfrReg,<br>CongoBasin, EasternAf,<br>SouthernAf, WesternAf,<br>EthiopiaReg)                                         |
|                                     |                                                     | "World" .<br>(SET.REGION37)                                                                                                    | "World" .<br>(SET.REGION38)                                                                                                                 |
| Sets_region_w<br>b.gms              | REGION_AG_MAP(REGION_AG,AN<br>YREGION)              | AFR .(SouthAfrReg,<br>CongoBasin, Easternaf,<br>Southernaf, WesternAf)                                                         | AFR .(SouthAfrReg,<br>CongoBasin, Easternaf,<br>Southernaf, WesternAf,<br>EthiopiaReg)                                                      |
|                                     |                                                     | WLD . (SET.REGION37)                                                                                                           | WLD . (SET.REGION38)                                                                                                                        |
| Data_IRRI_DE<br>MAND_SUPPL<br>Y.gms | <pre>Demand_water_region(AnyReg ion,IR_items)</pre> |                                                                                                                                | EthiopiaReg<br>.FAO_adjust                                                                                                                  |

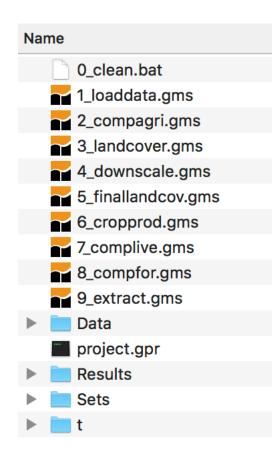
File: Sets\_region\_ag.gms



# Exercise 2: Introduce a new country as a separate region

Then all you have to do  $\rightarrow$ 

Decl\_Rsets.gms \$setglobal REGION REGION38


#### Some decisions to make

Is your region a NODEFOR\_REGION(ANYREGION)? Is your region a NOSUCKLER\_REGION(ANYREGION)? Is your region a TROPICAL\_REGION(ANYREGION)?

Maybe you are missing some country-specific data. For example:

- Adjustments for the water yield for Ethiopia
- Adjustments for the forestry sector for Ethiopia

### Exercise 3: Introduce a new crop and new landcover Overview of the Agristats\_proc folder



- Potentially include national agricultural statistics at sub-national level (2)\_
- Potentially include alternative land cover map (3\_)
- Harmonize crop statistics and cropland area given by the land cover map at simulation unit level (4\_ and 5\_)
- Add by-default compilation files in the Data folder which use as input the harmonized land cover map: 2\_comp\_cropdata (6\_); 3\_compfeeddata, 3 comp\_livedata and 3\_consgrsInd are merged into one comp\_livestock file (7\_); 4\_compfordata, 4\_consforest and 4\_mai4myk are merged into one comp\_forestry file (8\_).
- Extract the final database (for crops, livestock and forestry parameters) for the country/region of interest into one gdx

### Exercise 3: Introduce a new crop and new landcover Overview of the Agristats\_proc folder



Include crop yield, area and production

Introduce new land cover, map land cover to GLOBIOM classes

Allocate basearea and productivity by crop for the year 2000 to cropland area of the new landcover map



Various approaches available using various softwares:

- Cross entropy / minimization of variation approach
- Available in R and GAMS

Basic idea is to allocate crop data by crop in such a way that the sum of the areas and production of the crops still matches with the sub-national statistics.

| rpLnd   | RubAgrofor     |
|---------|----------------|
|         | OtherAgrofor   |
|         | RubMono        |
|         | RUDIVIONO      |
|         | OtherMono      |
|         | CROPLAND       |
| otRel   | WATER          |
|         | NoData         |
|         |                |
|         | SETTLEMENT     |
|         | CLOUD          |
| tFor    | TeakPlant      |
|         | PulpPlant      |
|         |                |
|         | OtherTimbPlant |
| tOpa    | OpalMono       |
| ngFor   | LoggedFor      |
| ligi ol | Loggodi ol     |
|         | LoggedSwaFor   |
|         | LoggedMang     |
| riFor   | UndisFor       |
|         |                |
|         | UndisSwaFor    |
|         |                |
|         | UndisMang      |
| atLnd   | Grass          |
|         | SHRUB          |
|         | OthCleared     |
|         |                |