International Institute for Applied Systems Analysis

SUPREMA GLOBIOM-MAGNET Training

December 4, 2020

# **GLOBIOM** Model structure, equations & variables

Center for Environmental Resources & Development, Presenter: Stefan Frank



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 773499 SUPREMA.

# Model file structure

### File structure model folder:

- 1\_loaddata: Loading data
- 2\_activesets: Data aggregation
- 3\_precompute: Final data compilation
- 3b\_calibtrade: Calibration of trade
- 4\_model: Model & base year calibration
- 5\_precompute\_scen: Compilation scenario data
- 6\_scenarios: Scenario implementation
- 7\_output: Output reporting

```
***
* _____
* GLOBIOM EXECUTION FILE
* Top-level script of the GLOBIOM model. It executes the numbered stages of
* the model in-sequence, passing the output of a stage as input to the
* next stage via the filesystem (``.g00`` files in the ``Model/t`` directory).
* This allows the model to be re-run quickly after modifying a stage by
* commenting out the execute statements of prior stages: since these will not
* produce modified output, their existing output files can be re-used.
* After running this script, check that all files compiled and executed
* without error by opening ``0 executebatch.log`` and searching for occurrences
* of "error" and "infeasible". These should be absent.
****
$set env ide=%gams.ide% lo=%gams.lo% errorlog=%gams.errorlog% errmsg=1 pw=130 cerr=5
$setLocal X %system.dirSep%
execute "gams 1 loaddata.gms
                                     %env%
                                                                  -s .%X%t%X%a1 v1
execute "gams 2 activesets.gms
                                     %env% -r .%X%t%X%a1 v1
                                                                  -s .%X%t%X%a2 v1 gdx=.%X%gdx%X%a2 v1 ";
execute "gams 3 precompute.gms
                                     %env% -r .%X%t%X%a2 v1
                                                                  -s .%X%t%X%a3 v1 gdx=.%X%gdx%X%a3 v1 ";
                                     %env% -r .%X%t%X%a3 v1
                                                                  -s .%X%t%X%a3b v1 gdx=.%X%gdx%X%a3b v1";
execute "gams 3b calibtrade.gms
execute "gams 4 model.gms
                                     %env% -r .%X%t%X%a3b v1
                                                                  -s .%X%t%X%a4 v1 gdx=.%X%gdx%X%a4 v1 ";
*execute "gams 5 precompute scen.gms %env% -r .%X%t%X%a4 v1
                                                                  -s .%X%t%X%a5 v1 gdx=.%X%gdx%X%a5 v1";
* Identifier of the output file
$set output name Baseline may18 adj
execute "gams 6 scenarios.gms
                                     %env% -r .%X%t%X%a4 v1
                                                                  -s .%X%t%X%a6 v1 test gdx=.%X%gdx%X%a6 v1 test"
*execute "gams 7 output.gms %env% -r .%X%t%X%a6 v1 //CSV=1 //lab=%output name%";
***
* Arguments for ``7 output.gms``:
  - ``//CSV=1`` for production of a CSV file using GDXVIEWER.
* Use this command to convert a .g00 into .gdx
*execute "gams blank.gms
                                      %env% -r .%X%t%X%a6 v1 gdx=.%X%gdx%X%a6 v1 FW=1"
```

SUPREMA GLOBIOM-MAGNET Training, December 4, 2020

# **Overview of key GLOBIOM equations**

Objective equation

• Maximizing global producer + consumer surplus for agriculture and forestry

Linearization and convexity equations:

- Stepwise linearization of non-linear functions e.g. demand functions
- $\circ$  Non-linear variable <= weighted sum of closest fixed points

Balance equations:

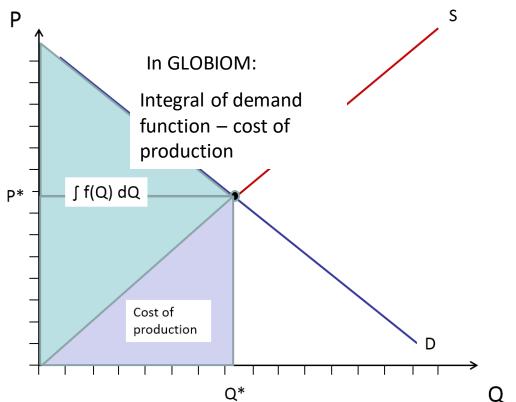
- Market balance: Supply >= demand
- $\circ$  Land balance: New land use >= previous land use + land expansion
- Resource constraints: Water available >= water use

0 ...

Inertia equations:

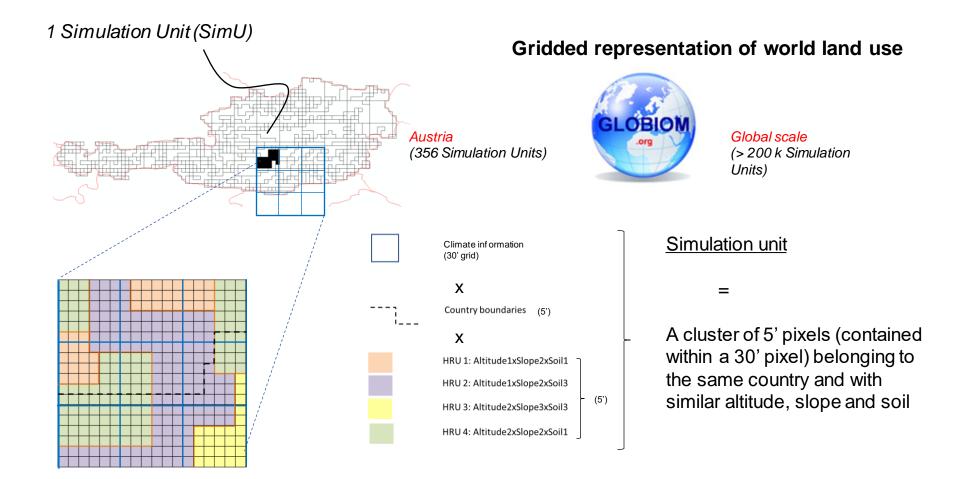
- Crop new >= crop area previous \* maxcrop\_coef
- Animal number >= animal number previous \* lstick\_coef

0...


Accounting equations:

• GHG Emissions = Activity Level \* GHG Emissions Coefficient

# **Objective equation**


# Maximizing global consumer and producer surplus:

- + Demand function integral
- Costs crop production
- Costs dedicated energy crops
- Costs forest harvesting
- Forest industry investment cost
- Processing costs
- Land use change costs
- Resource supply costs
- Trade costs
- -/+ Calibration costs/subsidies





# Spatial resolution – Simulation Units



# Crop production

### 18 crops in 4 management systems

- Barl, BeaD, Cass, ChkP, Corn, Cott, Gnut, Mill, OPAL, Pota, Rape, Rice, Soya, Srgh, SugC, Sunf, SwPo, Whea
- SS subsistence, LI low input, HI high input,
  - IR high input & irrigation (4 sub-systems: Basin, Furrow, Sprinkler and Drip)

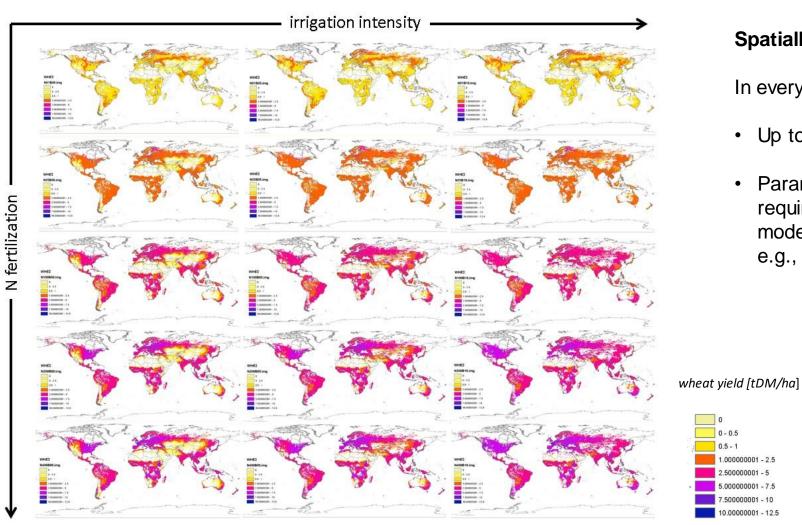
### Variables

• Crop area [1000 ha]

CROP\_VAR(COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,CROPTECH)

#### **Parameters**

• Base area, yield, cost, N/P requirements, GHG coefficients


CROP\_DATA (COUNTRY, ALLCOLROW, ALTICLASS, SLPCLASS, SOILCLASS, AEZCLASS, CROP, CROPTECH, ALLITEM)

#### Equations

o Balance equations: matching physical crop areas with total available cropland

o Inertia equations: limiting maximum expansion of production systems or crops at SimU level

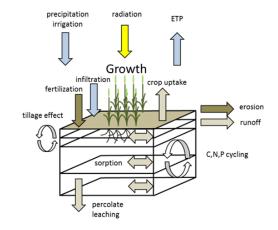
# Crop production systems



Balkovic et al. (2014)

#### Spatially explicit production functions

In every SimU:


.000000001 - 2.5 500000001 - 5

00000001 - 7.5

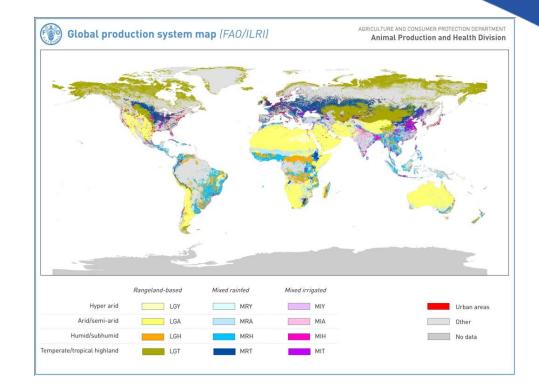
500000001 - 10 10.00000001 - 12.5

- Up to 18 possible crops & 4 crop managements
- Parameters (yield, fertilizer and irrigation input requirement) estimated with biophysical models

e.g., EPIC model (Izaurralde et al., 2006)



Ŧ


IASA

SUPREMA GLOBIOM-MAGNET Training, December 4, 2020



## Livestock production systems

| ANIMALS: 10 Animal types                                                                                                                                                                                                                                         | LIVE_SYSTEM: 8 Production system                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BOVO – Bovine meat herd<br>BOVD – Bovine diary herd<br>BOVF – Bovine followers<br>SGTO – Sheep and goat meat herd<br>SGTD – Sheep and goat dairy herd<br>SGTF – Sheep and goat followers<br>PIGS – Pigs<br>PTRB – Broilers<br>PTRH – Laying hens<br>PTRX – Mixed | LGA – Grazing arid<br>LGH – Grazing humid<br>LGT – Grazing temperate<br>MRA – Mixed arid<br>MRH – Mixed humid<br>MRT – Mixed temperate<br>OTHER – Other system<br>URBAN – Urban system |



#### Variables

• Livestock numbers [1000 TLU]

LIVE VAR (COUNTRY, ALLCOLROW, ALTICLASS, SLPCLASS, SOILCLASS, AEZCLASS, LIVE SYSTEM, ANIMALS)

#### Parameters

• Feed requirements, Milk and meat yield, GHG coefficients by production system and animal LIVE\_DATA (COUNTRY, LIVE\_SYSTEM, ANIMALS, AllITEM)



# Livestock production – Feed

Feed aggregates: Feed grains, Grass, Stover and Occasional

Feed grains: All 18 crops (9 different aggregates)

#### Variables

• Total livestock feed demand for grains at the regional level [1000 ton]

FEEDQUANTITY (REGION, CROPS)

o Utilized spatially explicit pasture area [1000 ha]

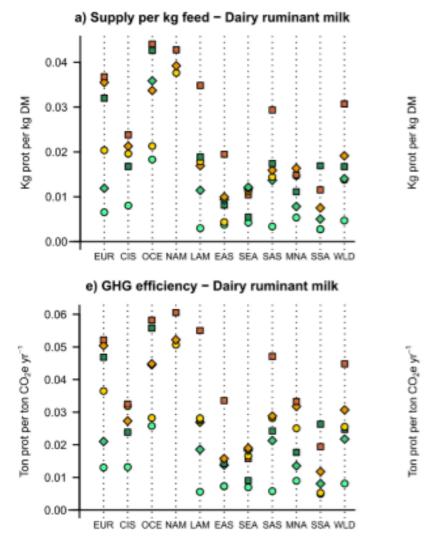
GRAS\_VAR (COUNTRY, ALLCOLROW, ALTICLASS, SLPCLASS, SOILCLASS, AEZCLASS)

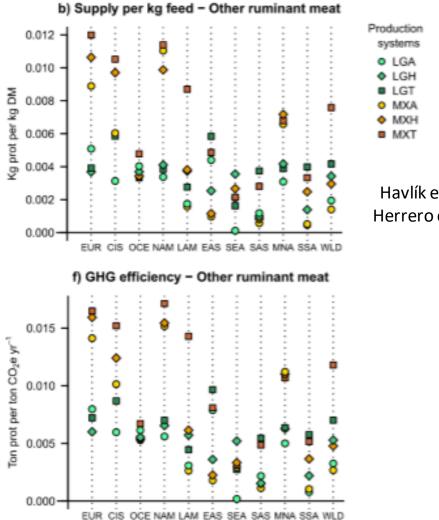
#### Parameters

 $\circ$  Base area and productivities

GRAS\_DATA (COUNTRY, ALLCOLROW, ALTICLASS, SLPCLASS, SOILCLASS, AEZCLASS, ALLITEM)

 $\circ$  Feed requirements, Milk and meat yield, GHG coefficients by production system and animal

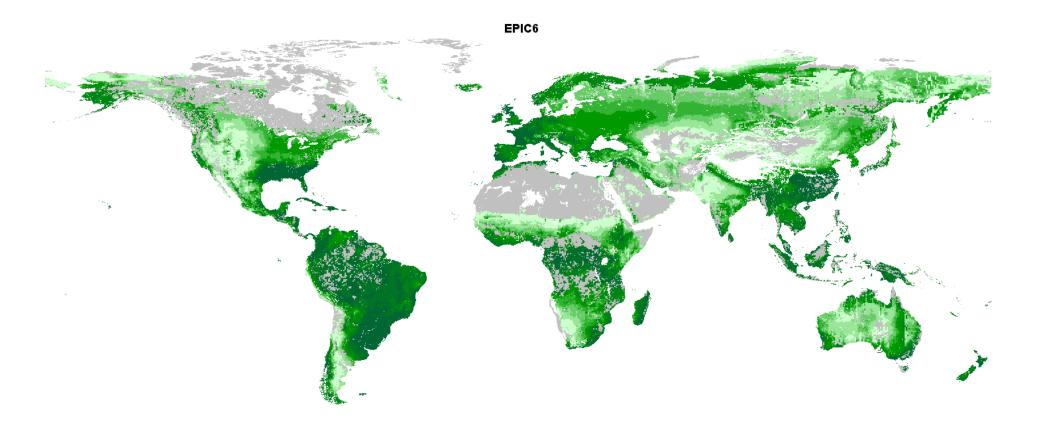

LIVE\_DATA(COUNTRY,LIVE\_SYSTEM,ANIMALS,AllITEM)


#### Equations

- Herd dynamics equations
- $\circ$  Feed equations
- $\circ$  Inertia equations



### Livestock production systems






Havlík et al. 2014 Herrero et al. 2013



# Grassland productivities





Source: EPIC model

SUPREMA GLOBIOM-MAGNET Training, December 4, 2020

### Forest production – Biomass

#### **Primary biomass types:**

- Stemwood: sawlogs, pulplogs, other industrial round wood, fuelwood
- Logging residues: branches, stumps, and harvest losses

#### Variables

• Area of forest harvested during the rotation time [1000 ha]

HARVEST\_VAR(COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,ForMngType)

• Harvested quantity of a particular biomass grade [1000 m3]

SQUANTITY\_FOREST (COUNTRY, ALLCOLROW, ALTICLASS, SLPCLASS, SOILCLASS, AEZCLASS, FORMNGTYPE, PRODUCT)

#### **Parameters**

 Mean annual increment, proportion of different types of biomass, carbon balance, harvest cost

FOREST\_DATA (COUNTRY, ALLCOLROW, ALTICLASS, SLPCLASS, SOILCLASS, AEZCLASS, FORMNGTYPE, AL LITEM)



### Forest production – Industry

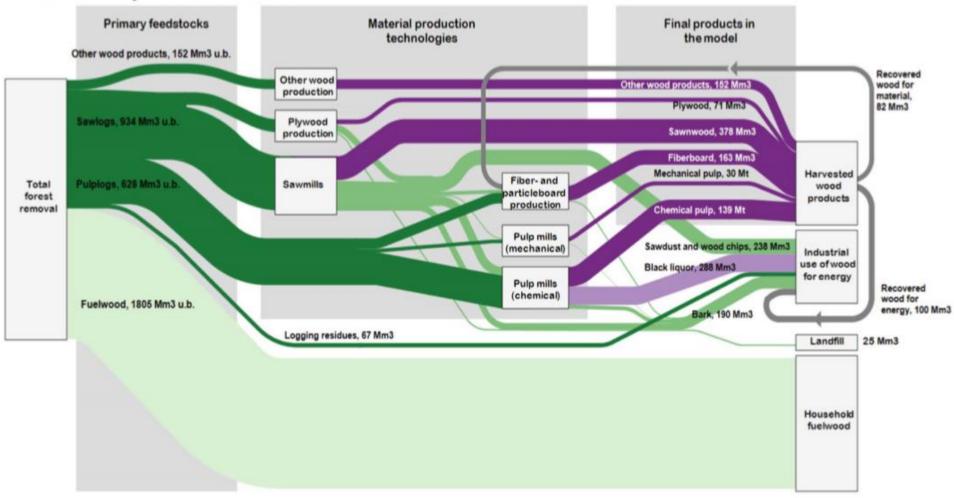
#### Industry products:

- 8 final products: sawnwood, plywood, fiberboard, mechanical and chemical pulp, other industrial roundwood, fuelwood, energy wood
- o 5 by-products: sawdust, woodchips, bark, black liquor, recycled wood

#### Variables

- Quantity of processed primary product [1000 m3]
- PQUANTITY (REGION, PROCESS)
- Processing capacity of main final products [1000 m3 or 1000 t] CAPACITY VAR (REGION, PRODUCT)

#### **Parameters**


Input-output relationships between primary and final products and processing cost
 PROCESSDATA (REGION, PROCESS, PRODUCT)

#### Equations

- Harvesting equations: extraction of different biomass grades, logging residues, wood recycling etc.
- Forest industry equations: capacity constraints
- $\circ~$  Land balance equation



# Forest production and forest industries



#### GLOBIOM woody biomass use in 2010

Lauri et al. 2017



### Natural resources – Land

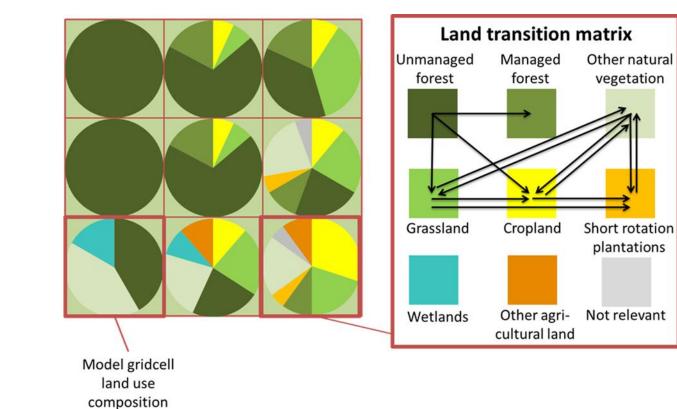
#### Land cover types:

 Cropland, Grassland, Short rotation plantations, Managed forest, Unmanaged forest, Other natural vegetation

#### Variables

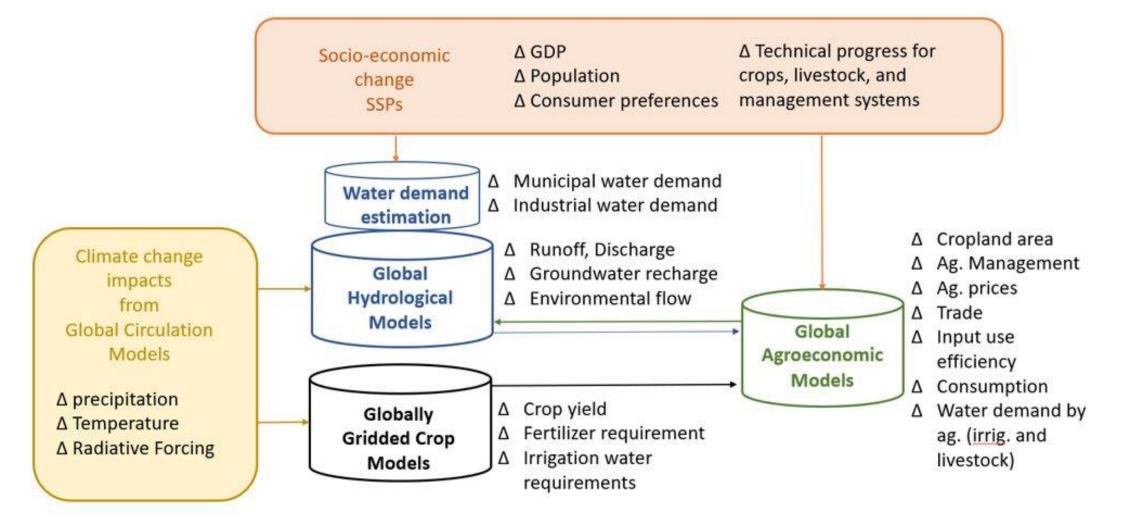
• Land cover/use area [1000 ha]

LANDAVAIL\_VAR (COUNTRY, ALLCOLROW, ALTICLASS, SLPCLASS, SOILCLASS, AEZCLASS, LC\_TYPE)


○ Land use change [1000 ha]

LUCDET\_VAR (COUNTRY, ALLCOLROW, ALTICLASS, SLPCLASS, SOILCLASS, AEZCLASS, LC\_INIT, LC\_CRNT)




# Land cover change

- Land cover change endogenous depending on profitability of different land use activities
- Conversion implies a conversion cost
- Max conversion rates can be capped to mimic policy/social constraints





# Irrigation water use



Palazzo and Kahil (in preparation). Assessing global water resources embedded in agroeconomic systems.



# GHG emissions accounting

Spatially explicit accounting of AFOLU GHG emissions at the SimU level. Link to G4M for detailed forest sector carbon dynamics

### Variables

 AFOLU GHG emissions [Million tons CO2 equivalent]

EMISSION\_VAR (REGION, GHGACCOUNT)

| Sector             | Source                                     | GHG                                  | Reference                                                      |
|--------------------|--------------------------------------------|--------------------------------------|----------------------------------------------------------------|
| Land use<br>change | Deforestation                              | CO <sub>2</sub>                      | Downscaled FRA 2005<br>(Kindermann et al. 2008)                |
|                    | Conversion of<br>other vegetation<br>types | CO <sub>2</sub>                      | Ruesch and Gibbs (2008)                                        |
|                    | Soil carbon                                | CO <sub>2</sub>                      | IPCC Tier 1 approach                                           |
| Crops              | Fertilizer use                             | N <sub>2</sub> O                     | Requirements from EPIC/IFA,<br>emission coefficients from IPCC |
|                    | Rice production                            | CH <sub>4</sub>                      | IPCC Tier 1 approach                                           |
| Livestock          | Enteric<br>fermentation                    | CH <sub>4</sub>                      | RUMINANT model (Herrero et al. 2008)/IPCC                      |
|                    | Manure<br>management                       | N <sub>2</sub> O,<br>CH <sub>4</sub> | RUMINANT model (Herrero et al. 2008)/IPCC                      |
|                    | Manure<br>dropped/applied                  | N <sub>2</sub> O                     | RUMINANT model (Herrero et al. 2008)/IPCC                      |

# Additional GLOBIOM modules

- Food security and undernourishment
- Fisheries & aquaculture
- Nitrogen cycle

•

. . .

- Global water demand and link to hydrological models
- Biodiversity and link to ecosystem models
- Bioenergy and link to energy system models



### For further information: <a href="http://www.globiom.org">www.globiom.org</a>



