

science for global insight

International Institute for Applied Systems Analysis www.iiasa.ac.at FABLE, 3rd Global meeting PIK, Germany December 3-6, 2018

GLOBIOM

Petr Havlík havlikpt@iiasa.ac.at

IIASA, International Institute for Applied Systems Analysis

Time dimension and applications

Standard GLOBIOM: 10 year time steps (standard), 5 years, 1 year

11ASA

Crops: EPIC

Spatially explicit production functions

ST A

Crop and grass yield effects: EPIC

% change in corn yield [2050]

EPIC for RCP 8.5, MIROC-ESM-CHEM

ITASA

Crop sector adaptation: GLOBIOM

11ASA

Livestock

Climate change impact on livestock

Quality and quantity of feed

Not accounted for: heat stress, diseases and disease vectors, water, ...

Source: Havlík et al. 2015, FAO

CC effect on grassland:

1145A

Climate change adaptation

Livestock system transitions triggered by climate change

SSA WRD EUR CIS NAM LAM EAS SEA SAS MNA 100 10 300 50 200 00 0 0 9 50 EPIC_WTco2 LPJmL_WTco2 EPIC_WTco2 PJmL_WTco2 EPIC_W0co2 -PJmL_WOco2 PJmL_WTco2 EPIC_W0co2 PJmL_WOco2 EPIC_WTco2 PJmL_WTco2 EPIC_W0co2 PJmL_WOco2 EPIC_WTco2 PJmL_W0co2 EPIC_W0co2 PJmL_W0co2 EPIC_W0ce2 PJmL_W0co2 EPIC_WTco2 EPIC_W0co2 PJmL_WOco2 EPIC_WTco2 EPIC_W0co2 PJmL_WOco2 EPIC_WTco2 PJmL_WTco2 EPIC_W0co2 PJmL_WOco2 EPIC_WTco2 PJmL_WTco2 EPIC_W0co2 PJmL_WOco2 EPIC_WTco2 EPIC_W0co2 EPIC_WTco2 PJmL_WTco2 PJmL_WTco2 PJmL_W0co2 EPIC_WTco2 PJmL_WTco2 PJmL_WTco2 EPIC_W0co2 PJmL_WTco2 LGA Grassland based Mixed Other

Absolute ruminant number change due to climate change, by system [2050]

ITASA

Change in numbers / noCC [million TLUs]

Climate change adaptation

Absolute land cover change due to climate change by 2050

10

ITASA

Fisheries & Aquaculture

Source: Batka & Havlík, in preparation

Forestry sector

- Implications of further developing the bioenergy sector
- Substitution effects of woody material use for reaching climate targets

Land cover change

- Land cover change endogenous depending on relative profitability
- Conversion implies a conversion cost
- Max conversion rates can be capped to mimic policy/social constraints

ITASA

GHG accounts

Sector	Source	GHG	Reference
Land use change	Deforestation	CO ₂	FRA 2005 carbon in above ground and below ground living biomass downscaled at 0.5 degree (Kindermann et al. 2008)
	Conversion of other vegetation types	CO ₂	Ruesch and Gibbs (2008)
Crops	Fertilizer use	N ₂ O	Requirements from EPIC/IFA, emission coefficients from IPCC
	Rice production	CH ₄	IPCC Tier 1 approach
Livestock	Enteric fermentation	CH ₄	RUMINANT model (Herrero et al. 2008)/IPCC
	Manure management	N ₂ O, CH ₄	RUMINANT model (Herrero et al. 2008)/IPCC
	Manure dropped/applied to pastures/cropland	N ₂ O	RUMINANT model (Herrero et al. 2008)/IPCC

S

Water balance

Water exploitation index (WEI) with constant irrigation water use

+ climate change impacts on irrigation water requirements calculated from EPIC

ITASA

Scenario impacts on biodiversity

SCEN - RCP4p5_SPA1_SSP1 - rcp4p5_SPA2_SSP2 - RCP4p5_SPA3_SSP3

GLOBIOM: From global to local

17

S

Research agenda

Scenarios and foresight

Climate change mitigation

Climate impacts and adaptation

Human dimension of development

18

S

Thank you !

www.globiom.org