vignettes/replace_globiom_land_cover_land_use.Rmd
replace_globiom_land_cover_land_use.Rmd
After creating the updated GLOBIOM input files, several adjustments
need to be made in GLOBIOM to replace the country-level land cover and
crop distribution information. The existing land cover data in GLOBIOM
can be found in the parameter LANDCOVER_INIT
which defines
the land cover classes at the simulation unit level and the existing
crop specific land use data found in CROP_DATA
parameter at
the simulation unit level.
The steps required to update the GLOBIOM land cover and land use maps with new maps are the following:
Download the GLOBIOM model
and GLOBIOM
data
branches
Set the regional definitions (myRegion
) and the
spatial resolution (0.5 degree grid, simulation unit, or LUID) and run
the data compliation (0_execute_total.gms
) from the
data
branch
Start a new GAMS script that will load the appropriate files
containing region and item set definitions and other national level crop
production and price statistics (e.g. FAOSTAT data) from the
finaldata
subfolder of the model
folder
Load the existing data parameters for cropland use
(CROP_DATA
), land cover
(LANDCOVER_INIT_CrpGrsForOagADJ
), and load the gdx outputs
from mapspam2globiom: the new cropland use crop_area
and
new land cover landcover
maps
Replace the existing cropland use in the CROP_DATA
parameter with the new dataset and replace the land cover data in
LANDCOVER_INIT_CrpGrsForOagADJ
Identify and fill gaps in CROP_DATA
for missing data
for yield, water, and nutrient requirements
Replace production cost data
Calibrate and harmonize the cropland area and harmonize land cover area with national statistics
Calibrate and rescale the crop yields using the FAO statistics
Write the new parameters to the finaldata
subfolder
of the GLOBIOM model
branch
model
and GLOBIOM
data
branches
For guidance in how to download the GLOBIOM model branch used for the FABLE training: https://github.com/iiasa/GLOBIOM_FABLE/blob/master/README.md
This repository holds the GLOBIOM model code released for the FABLE training.
During the FABLE training, the model Model/finaldata
input files were distributed via DropBox as the
GLOBIOM_finaldata.zip
archive. That same data has now been
included in this repository.
To run the model, clone the
repository to your local machine. The stages of GLOBIOM can then be
executed using Model\0_executebatch.gms
.
The above-mentioned finaldata is mostly output from a pre-compilation stage. Pre-compilation turns raw source data into model-ready input data (finaldata). A separate GLOBIOM_FABLE_Data repository has been provided that contains the source data and pre-compilation scripts. It is required to make involved changes such as isolating a country as a separate GLOBIOM region.
To request access to the GLOBIOM_FABLE_Data repository, please email
to globiom.fable@iiasa.ac.at
. On acceptance of your
request, you will receive an invitation from GitHub to join the
GLOBIOM_FABLE_Data repository. Then you can read
these instructions on how to use the data. Note that this link will
be accessible only after having received access, and when signed in to
GitHub.
An optional full-featured graphical user interface (GUI) for GLOBIOM is available from the GLOBIOM_GUI repository. For more information see the GLOBIOM GUI Overview page.
GLOBIOM is a large model comprised of many GAMS source files. To help you find your way around the model, a separate documentation website has been provided. Both the model as well as the GAMS code are documented there.
The model has been tested to run on Windows, Linux, and MacOS. Beware that the solver can yield results that differ between platforms even when using the same GAMS version.
This repository contains the GLOBIOM model as provided for the purposes of the FABLE project. This version will be regularly updated. GLOBIOM will be released under an Open Source license later. Therefore FABLE partners are requested to not redistribute the GLOBIOM model contained in this repository.
Cooperation with developing GLOBIOM is possible via this repository. Please contact us, and you will receive a repository branch with write access where you can commence with sharing your modifications and developments.
For guidance in how to download the GLOBIOM data branch:
This repository holds the GLOBIOM pre-compilation scripts and
raw data that can be used to prepare the Model/finaldata
input files for GLOBIOM_FABLE.
This is not a public release. This repository is made available to early-adopters on an as-needed basis, and should not be shared nor redistributed: licensing terms and intellectual property rights of the various data sets are being worked out.
The content of this repository is intended for further improvement of country-specific GLOBIOM versions. If you intend to use this data for other purposes, please consult with the GLOBIOM team at IIASA.
To make this repository work with GLOBIOM_FABLE, clone
it to a Data
directory co-located with the GLOBIOM
Model
directory. From the command line, this can be done as
follows:
cd <directory where you cloned GLOBIOM_FABLE>
git clone https://github.com/iiasa/GLOBIOM_FABLE_Data Data
This should yield a Data
directory adjacent to the
Model
directory. Next, enter the Data
directory and switch to the branch of your country team:
cd Data
git checkout <name of your branch>
Note that this will cause this Data repository to be nested inside
the GLOBIOM_FABLE repository on your local machine. To make this work
without mix-ups, make sure that theData
directory is being
ignored by the root-level .gitignore
file of the
GLOBIOM_FABLE repository.
To run the pre-compilation, execute
Data/0_executebatch_total.gms
. Pre-compilation will
overwrite a subset of the files in the Model/finaldata
folder.
The pre-compilation and the model are interdependent, and as such
compatible commits in GLOBIOM_FABLE_Data
and GLOBIOM_FABLE
should be used together. For the master
branches,
compatible commits have been marked with match_*
release
tags.
As of release match_4,
pre-compilation works also on non-Window platforms and non-Latin
locales. This was achieved by means of a custom developed
xl2gdx.R
R script that requires: * A recent version of R. * The tidyverse R package collection. *
The gdxrrw
R package.
Check that the Rscript
binary can be invoked from the
command line, and if not adjust your PATH
environment
variable to point to where the R binaries can be found.
data
branch
For the second step, the user should clarify which spatial resolution which will be used: the 0.5 degree grid (often called the COLROW30 resolution) or the simulation unit resolution. The simulation unit resolution (often called simu), uses soil, slope, and altitude class maps which are intersected on the 0.5 degree grid resulting in the highest spatial resolution possible in GLOBIOM.
The spatial resolution should be set and read in from the
decl_Rset.gms
file. Depending on the resolution of set by
the user’s region/country of choice, the land use and land cover maps
produced by mapspam2globiom should be aggregated to the 0.5 degree grid
or left at the simulation unit level accordingly. The user should pay
particular attention to make sure the correct country is selected (see
code below for an example for Malawi) and that the spatial resolution is
set properly. To use the Rsets.gms for a simulation unit resolution
effectively some changes to this file may be necessary.
Changing the decl_Rsets.gms
file for simulation unit
resolution (example: Malawi)
* Define regional resolution
$setGlobal REGION REGION37
* Alternatives: GGIREGION(11) or REGION28(28) or REGION30(30) or REGIONADB(31)
$ifThen.A not setGlobal myREGION
$ ifThen.B exist "%system.FP%temp%system.dirSep%GUI_region_settings.gms"
* Use settings from GUI
$ include "%system.FP%temp%system.dirSep%GUI_region_settings.gms"
$ else.B
* Set country/region to single out
$ setGlobal myREGION MalawiReg
* Use SIMU (30X30 acrmin and HRU classification) resolution (SIMU)
* Use CR30 (30x30 arcmin ColRow) resolution (CR30)
* USE LUID (2x2 deg) resolution (LUID) for myREGION
$ setGlobal resREGION SIMU
$ endIf.B
$endIf.A
*IMPORTANT: in the rest of the code in this file, replace the old global switch "crREGION" with new name "resRegion"
...
*Other part of the file unchanged
...
SET
SIMU_COUNTRY(COUNTRY)
CR30_COUNTRY(COUNTRY)
LUID_COUNTRY(COUNTRY)
HRUN_COUNTRY(COUNTRY)
;
*for colrow resolution
$ifthen %resREGION% == CR30
SIMU_COUNTRY(COUNTRY)
= NO;
CR30_COUNTRY(COUNTRY)
$ REGION_MAP('%myREGION%',COUNTRY)
= YES;
LUID_COUNTRY(COUNTRY)
$ SUM(REGION_MAP(REGION,COUNTRY)
$(NOT(SAMEAS(REGION,'%myREGION%'))),1)
= YES;
$endif
*for LUID resolution
$ifthen %resREGION% == LUID
SIMU_COUNTRY(COUNTRY)
= NO;
CR30_COUNTRY(COUNTRY)
= NO;
LUID_COUNTRY(COUNTRY)
$ SUM(REGION_MAP(REGION,COUNTRY),1)
= YES;
$endif
*for simulation unit resolution
$ifthen %resREGION% == SIMU
SIMU_COUNTRY(COUNTRY)
$ REGION_MAP('%myREGION%',COUNTRY)
= YES;
CR30_COUNTRY(COUNTRY)
= NO;
LUID_COUNTRY(COUNTRY)
$ SUM(REGION_MAP(REGION,COUNTRY)
$(NOT(SAMEAS(REGION,'%myREGION%'))),1)
= YES;
$endif
After the regional defintion is set, the user should then run the
entire data compilation (0_execute_total.gms
) in the
data
folder before attempting to navigate through the rest
of this guide. Updating the landcover and land use maps is the last step
of the data compliation before moving on to run the model. The datasets
that are needed to update the cropland use and land cover maps are
aggregated at the proper resolution by the data compilation file
(0_execute_total.gms
).
finaldata
subfolder of
the model
folder
Start a new GAMS .gms
file in the main folder of the
data
branch that will load the appropriate files containing
region and item set definitions and other national level crop production
and price statistics (e.g. FAOSTAT data) from the finaldata
subfolder of the model
folder
Other files should be included which contain the additional sets,
parameters ,and datasets needed to properly include the new land cover
and land use maps. Many of these can be found in the model
folder or the finaldata
folder within the model folder
which will have been updated based on the data compilation performed in
Step 2.
The following files should be read in by using the
$include
in the GAMS script:
decl_sets.gms
contains all the major set definitions
decl_regionset.gms
contains the regional set
definitions
decl_Rsets.gms
contains the switches to aggregate the
model to different spatial resolutions (see Spatial Resolution section
above)
sets_colrow.gms
contains important spatial colrow and
simulation unit information data
This guide uses the FAOSTAT crop production data from
proddata_c.gms
and the FAOSTAT crop price data from
data_supply.gms
as its main harmonization dataset however
any good national level crop production and price statistic dataset with
a full information on crop area, crop production, and price can be used.
Load into the .gms
file the two FAOSTAT files found in the
finaldata
subfolder in the model
folder.
PRODDATA_C
is the name of the parameter which contains the
national level production statistics from FAO which will be used for
rescaling the crop yields and SData
is the parameter which
contains the national level crop price data.
In the GAMS .gms
file, load
decl_paramgdx.gms
and data_crops.gdx
which are
found in the finaldata
subfolder in the model
folder.
decl_paramgdx.gms
properly defines the
CROP_DATA
parameter. The CROP_DATA
parameter
and its associated data is stored in the .gdx
file.
The CROP_DATA
parameter is the parameter which stores
the crop land use are and production management information. Updating
the CROP_DATA
parameter with the new crop land use maps and
other crop production data is the first objective of this guide.
In the GAMS .gms
file, load the land cover parameter
found in the data_EPICLandCov_CrpGrsForOagADJ.gms
which is
found in the finaldata
subfolder in the model
folder and is compiled by the data compilation using the existing
datasets.
The parameter which contains the existing landcover data by land unit
is called LANDCOVER_INIT_CrpGrsForOagADJ
. Updating the
LANDCOVER_INIT_CrpGrsForOagADJ
parameter with the new land
cover maps is the second objective of this guide.
In the GAMS .gms
file, load the new landcover dataset
found in globiom_landcover_YEAR_ISO3.gdx
(YEAR and ISO3 are
replaced by the user’s ISO3 country code and the year of data)
This dataset is produced as an output from the mapspam2globiom R
package. The only parameter in this .gdx
file is a
parameter called landcover
which provides the new area
information on the land cover area per simulation unit is distinguished
by six different land use categories:
• Total crop and other agricultural land (CrpLnd, OthAgri)
• Grassland (Grass)
• Forest (Forest)
• Wetlands (WetLnd)
• Other natural vegetation (OthNatLnd)
• Not relevant land cover (NotRel)
Together with the grassland class (Grass), the total crop and other agricultural land classes comprise the total agricultural land cover areas by simulation unit within GLOBIOM. The land cover class total crop and other agricultural area is divided into two parts: (1) Cropland (CrpLnd), which presents the location of the 20 crops that are modelled by GLOBIOM and (2) Other agricultural land (OthAgri), which presents the location of all the other crops not explicitly modeled by GLOBIOM.
The total crop and other agricultural land class is linked with the
data layer with a more detailed information on the cropland use by crop
and management system per simu called
globiom_crop_area_YEAR_ISO3.gdx
(year and ISO3 are replaced
by the user’s ISO3 country code and the year of data) produced as an
output from the mapspam2globiom R package. In this .gdx
file there is a parameter called crop_area
which is the new
cropland use area dataset.
Load globiom_crop_area_YEAR_ISO3.gdx
into the GAMS
file.
*define the parameter
parameter
crop_area(ANYREGION,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,SPECIES,ALLTECH) new land use map from mapspam2globiom
;
*load new cropland use map from mapspam2globiom package
$GDXIN globiom_crop_area_YEAR_ISO3.gdx
$LOADDC crop_area
$GDXIN
CROP_DATA
and
replace the existing land cover data in
LANDCOVER_INIT_CrpGrsForOagADJ
Add code to the GAM .gms
file that will save the
existing CROP_DATA
and
LANDCOVER_INIT_CrpGrsForOagADJ
information for the country
into a separate parameter to be used later for harmonization wit the
national level statistics.
Parameter
CROP_DATA_Orig;
CROP_DATA_Orig(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,SPECIES,ALLTECH,ALLITEM) =
CROP_DATA(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,SPECIES,ALLTECH,ALLITEM);
*Note here: SIM_COUNTRY is used for a simulation unit resolution
Parameter
LANDCOVER_Orig;
LANDCOVER_Orig(SIMU_COUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass,LC_TYPES_EPIC)=
LANDCOVER_INIT_CrpGrsForOagADJ(SIMU_COUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass,LC_TYPES_EPIC);
Add to the code of the GAMS .gms
file, replace the
existing CROP_DATA
cropland use area for the country with
the new cropland use dataset (crop_area
) (example for the
simulation unit resolution below).
CROP_DATA(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,SPECIES,INPUTSYS,'BaseArea')
= crop_area(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,SPECIES,INPUTSYS);
Add to the code of the GAMS .gms
file, replace the
existing CROP_DATA
cropland use area for the country with
the new cropland use dataset (crop_area
). An example for
COLROW resolution is below which replaces the existing
CROP_DATA
, with new dataset while also aggregating to the
COLROW/CR30 resolution.
parameter
crop_area2(ANYREGION,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,SPECIES,ALLTECH) CR resolution of the new crop areas
;
crop_area2(CR30_COUNTRY,COLROW30,"Alti_Any","Slp_Any","Soil_Any",AEZCLASS,SPECIES,INPUTSYS)= sum((ALTICLASS,SLPCLASS,SOILCLASS),croparea_spam(CR30_COUNTRY,COLROW30,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,SPECIES,INPUTSYS));
*Note here: CR30_COUNTRY is used for the 0.5 degree COLROW resolution
CROP_DATA(CR30_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,SPECIES,INPUTSYS,'BaseArea') = crop_area(CR30_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,SPECIES,INPUTSYS);
For simulation unit resolution, add code that will replace the
existing LANDCOVER_INIT_CrpGrsForOagADJ
land cover area for
the country with the new land cover use dataset
(land_cover
).
LANDCOVER_INIT_CrpGrsForOagADJ(SIMU_COUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass,LC_TYPES_EPIC)
= landcover(SIMU_COUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass,LC_TYPES_EPIC);
For COLROW resolution, add code to the .gms
file that
will replace the existing CROP_DATA
, with new dataset while
also aggregating to the COLROW/CR30 resolution
parameter
landcover2(CR30_COUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass,LC_TYPES_EPIC) CR resolution of the new landcover
;
landcover2(CR30_COUNTRY,COLROW30,"Alti_Any","Slp_Any","Soil_Any",AEZCLASS,SPECIES,INPUTSYS) = sum((ALTICLASS,SLPCLASS,SOILCLASS), croparea_spam(CR30_COUNTRY,COLROW30,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,SPECIES,INPUTSYS));
*Note here: CR30_COUNTRY is used for the 0.5 degree COLROW resolution
LANDCOVER_INIT_CrpGrsForOagADJ(CR30_COUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass,LC_TYPES_EPIC)
= landcover2(CR30_COUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass,LC_TYPES_EPIC);
If the mapspam2globiom output has too many dimensions to fit in
CROP_DATA
or LANDCOVER_INIT_CrpGrsForOagADJ
or
the dimensions are in the wrong order you can reorder a parameter like
this:
parameter
crop_area_reorder;
*put new croparea spam data in correct order
crop_area_reorder(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,SPECIES,INPUTSYS)
$LANDCOVER_INIT_CrpGrsForOagADJ(SIMU_COUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass,'SimUarea')=
crop_area(SPECIES,INPUTSYS,SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS);
parameter
crop_area_dropdim;
*drop the simulation unit number from the new crop_area spam data
crop_area_dropdim(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,SPECIES,INPUTSYS)
$LANDCOVER_INIT_CrpGrsForOagADJ(SIMU_COUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass,'SimUarea')=
sum(SimUID, crop_area(SimUID,SPECIES,INPUTSYS,SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS));
To use the cropland use area map, cropland management and crop production information is needed in GLOBIOM to model the production at grid cell or unit level. A dataset of crop yields and input requirements should provide information that can be linked to the crop/management systems in each simu location. The dataset of yields and input requirements can be produced using outputs of regional biophysical crop models or locally reported yield and input data. The yield and input requirements dataset can also be generated using the existing crop model outputs available for GLOBIOM. GLOBIOM is likely to have existing biophysical crop model yields and input requirements for many crop/management systems at a grid cell or simulation unit level even if the previous cropland use map does not show crop area in that gridcell or simulation unit location in the base year. However if the newly generated cropland use map shows new crops/management systems in simu locations with no existing crop model yields and input requirements, it is necessary to fill this information gap. To do this we replace the missing information with the average national average values.
Add code to replace the CROP_DATA
crop yields for the
new crop areas:
CROP_DATA(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,PRODUCT)=
CROP_DATA_Orig(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,PRODUCT);
parameter
average_FAO_yield(anyregion,crops)
;
*calculate the average yield based on the FAO statistics
average_FAO_yield(simu_country,crops)$PRODATA_C(simu_country,CROPS,'AreaHarv') =
(PRODATA_C(simu_country,CROPS,'Yield')*PRODATA_C(simu_country,CROPS,'AreaHarv'))/
PRODATA_C(simu_country,CROPS,'AreaHarv');
parameter
average_EPIC_yield(anyregion,inputsys,crop)
;
*calculate the average yield for each system based on the EPIC data and existing land use map
average_EPIC_yield(simu_country,inputsys,crop) $ sum((ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS), CROP_DATA_Orig(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,'BaseArea')) = sum((ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROPS), CROP_DATA_Orig(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,CROPS)* (CROP_DATA_Orig(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,'BaseArea')))/ (sum((ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS), CROP_DATA_Orig(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,'BaseArea')));
parameter
average_FT(anyregion,inputsys,crop,*)
;
*Note: nitrogen = 'FTN'; phosporus = 'FTP' and irrigation water requirement = 'WATER'
*calculate the average nitrogen by crop and system
average_FT(simu_country,inputsys,crop,'FTN')$ sum((ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS), CROP_DATA_Orig(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,'BaseArea')) = sum((ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS), CROP_DATA_Orig(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,'FTN')* (CROP_DATA_Orig(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,'BaseArea')))/ (sum((ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS), CROP_DATA_Orig(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,'BaseArea')));
Use the following code to identify the grid cells or units with missing crop yield data and then replace it with the country average crop yield or other data sources.
Parameter
missing_crop_data;
*identify missing crop yield data (first pass)
missing_crop_data(SIMU_COUNTRY,colrow30,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,"Problem_1")
$(CROP_DATA(SIMU_COUNTRY,colrow30,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,"BaseArea") and
(sum(crops,CROP_DATA_Orig(SIMU_COUNTRY,colrow30,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,crops))=0))=
1;
*only replace the missing crop yields with management system specific crop yield averages when there is missing data after first pass
CROP_DATA(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,PRODUCT)$
$(CROPPRODMAP(CROP,PRODUCT) and missing_crop_data(SIMU_COUNTRY,colrow30,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,"Problem_1"))=
average_EPIC_yield(SIMU_COUNTRY,inputsys,crop);
*identify missing crop yield data (second pass)
missing_crop_data(SIMU_COUNTRY,colrow30,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,"Problem_2")
$(CROP_DATA(SIMU_COUNTRY,colrow30,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,"BaseArea") and
(sum(crops,CROP_DATA_Orig(SIMU_COUNTRY,colrow30,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,crops))=0))=
1;
*after second pass replace the missing crop yields with national averages
CROP_DATA(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,PRODUCT)$
$(CROPPRODMAP(CROP,PRODUCT) and missing_crop_data(SIMU_COUNTRY,colrow30,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,"Problem_2"))=
average_FAO_yield(SIMU_COUNTRY, PRODUCT);
*identify missing crop yield data (third pass)
missing_crop_data(SIMU_COUNTRY,colrow30,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,"Problem_3")
$(CROP_DATA(SIMU_COUNTRY,colrow30,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,"BaseArea") and
(sum(crops,CROP_DATA_Orig(SIMU_COUNTRY,colrow30,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,inputsys,crops))=0))=
1;
*if there are still missing crop yields after the third pass find an additional source or use a world average for crop yields.
Rather than rely on the exisiting dataset for crop production costs from CROP_DATA, it is eaiser to recalculate all the costs after updating the crop areas. The production costs are calculated with the assumptions that for low and subsistence crop production, the total costs equal the total revenues per ha. For high input, rainfed we also add the additional nutrient expenses based on USDA fertilizer farm prices, based on the Table 1. For irrigation systems, we add the additional nutrient requirement and also operations and maintenance costs for irrigation systems based on an FAO estimate based on smallholder irrigation Smith et al., 2014.
Table 1: USDA fertilizer farm prices
Fertilizer | farm price USDA-ERS |
---|---|
Nitrogen | 0.589 USD per kg |
Phosphorus | 0.562 USD per kg |
Irrigation Systems | Operations and maintenance costs |
---|---|
Basin | 370 USD per ha |
Furrow | 370 USD per ha |
Sprinkler systems | 1200 USD per ha |
Drip systems | 1760 USD per ha |
The following code should be added to the GAMS .gms file to replace the crop production costs.
PARAMETER
PRICE_FT(FT) farm prices of fertilisers in USD per kg
* SOURCE: http://www.ers.usda.gov/Data/FertilizerUse/ , Table 7
* calculated as average over 2001-2005 and recalculated on pure nutrients
/
FTN 0.589
FTP 0.562
/
* subsistence management system costs
CROP_DATA(simu_country,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,'SS','COST')
$(CROP_DATA(simu_country,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,'SS',"BaseArea") and
sum(crops$cropprodmap(crop,crops), sum(region$region_map(region,simu_country),PRODATA_C(REGION,CROPS,'Yield'))))
= sum(crops$cropprodmap(crop,crops), sum(region$region_map(region,simu_country),
SData(REGION,CROPS,"Price") * PRODATA_C(REGION,CROPS,'Yield')));
CROP_DATA(simu_country,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,'SS','COST')
$(CROP_DATA(simu_country,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,'SS',"BaseArea") and
not(sum(crops$cropprodmap(crop,crops), sum(region$region_map(region,simu_country),PRODATA_C(REGION,CROPS,'Yield')))))
= sum(crops$cropprodmap(crop,crops), sum(region$region_map(region,simu_country),
SData(REGION,CROPS,"Price") * average_yield(crops)));
* low input rainfed management system costs
CROP_DATA(simu_country,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,'LI','COST')
$(CROP_DATA(simu_country,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,'LI',"BaseArea") and
sum(crops$cropprodmap(crop,crops), sum(region$region_map(region,simu_country),PRODATA_C(REGION,CROPS,'Yield'))))
= sum(crops$cropprodmap(crop,crops), sum(region$region_map(region,simu_country),
SData(REGION,CROPS,"Price") * PRODATA_C(REGION,CROPS,'Yield')));
CROP_DATA(simu_country,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,'LI','COST')
$(CROP_DATA(simu_country,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,'LI',"BaseArea") and
not(sum(crops$cropprodmap(crop,crops), sum(region$region_map(region,simu_country),PRODATA_C(REGION,CROPS,'Yield')))))
= sum(crops$cropprodmap(crop,crops), sum(region$region_map(region,simu_country),
SData(REGION,CROPS,"Price") * average_yield(crops)));
* high input rainfed management system costs
CROP_DATA(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,'HI','COST')
$ CROP_DATA(simu_country,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,'HI',"BaseArea")
= sum(crops$cropprodmap(crop,crops), sum(region$region_map(region,simu_country),
SData(REGION,CROPS,"Price") * PRODATA_C(REGION,CROPS,'Yield')))
+ SUM(FT,(CROP_DATA(SIMU_COUNTRY,COLROW30,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,'HI',FT)
-CROP_DATA(SIMU_COUNTRY,COLROW30,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,'LI',FT))
* PRICE_FT(FT) * 2.5);
The purpose of this step is to harmonize the new base year crop area
with the reported FAO statistics for crop area. The user can use any
national crop area statistics but should take care to compare only
physical area as the cropland use maps produced by mapspam2globiom are
in physical areas not harvested area. The following code should be added
to the .gms
file and used to calculate the differences in
the crop areas with the national statistics.
SET
SOURCE
/
OBS_FAO Observed data from FAOSTAT
OBS_STAT Observed data from updated SPAM dataset
OBS_SIMU Observed data from updated GLOBIOM parameter
CALC
'PCT%' percent difference
OBS_STATINIT Observed data from the original source
/
PARAMETER
ACR_CHECK(ANYREGION,SPECIES,SOURCE) area check parameter in 1000 ha;
*From FAO
ACR_CHECK(SIMU_COUNTRY,CROP,'OBS_FAO')
= SUM(PRODUCT $CROPPRODMAP(CROP,PRODUCT),
PRODATA_C(SIMU_COUNTRY,PRODUCT,'AreaHarv'))/1000;
*From the new crop area
ACR_CHECK(SIMU_COUNTRY,CROP,'OBS_STAT')
= sum((ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,INPUTSYS),
crop_area(SIMU_COUNTRY,colrow30,ALTICLASS,SLPCLASS,SOILCLASS,INPUTSYS,CROP) ;
*from new simulation unit data in CROP_DATA
ACR_CHECK(SIMU_COUNTRY,CROP,'OBS_SIMU')
= SUM((ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,InputSys)
$ (CROP_DATA(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,InputSys,'BaseArea')),
CROP_DATA(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,InputSys,'BaseArea')) ;
ACR_CHECK(SIMU_COUNTRY,CROP,'PCT%')
$ ACR_CHECK(SIMU_COUNTRY,CROP,'OBS_STAT')
= (ACR_CHECK(SIMU_COUNTRY,CROP,'OBS_SIMU')/ACR_CHECK(SIMU_COUNTRY,CROP,'OBS_STAT')
-1) *100;
ACR_CHECK(SIMU_COUNTRY,CROP,'PCT%')
$ (abs(ACR_CHECK(SIMU_COUNTRY,CROP,'PCT%')) lt 0.001)
= 0;
The purpose of this step is to check the differences between the total cropland cover, the new cropland cover, and the aggregated cropland use. The mapspam2globiom package uses the new cropland cover dataset as an input for the cropland use maps so this step is simply to check that all crops are included properly.
PARAMETER
LndCov_CHECK(ANYREGION,SOURCE) land cover check parameter in 1000 ha;
*From the FAO statistics
LndCov_CHECK(SIMU_COUNTRY,'OBS_FAO')
= SUM(PRODUCT, PRODATA_C(SIMU_COUNTRY,PRODUCT,'AreaHarv'))/1000;
*From the original landcover map
ACR_CHECK(SIMU_COUNTRY,CROP,'OBS_STATINIT')
= SUM((ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS),
LANDCOVER_Orig(SIMU_COUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass,LC_TYPES_EPIC)
*From the new crop area
LndCov_CHECK(SIMU_COUNTRY,'OBS_STAT')
= sum((ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS),
landcover(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,'CrpLnd'));
*from new simulation unit data in CROP_DATA
LndCov_CHECK(SIMU_COUNTRY,'OBS_SIMU')
= SUM((ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS)
LANDCOVER_INIT_CrpGrsForOagADJ(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,'CrpLnd')) ;
LndCov_CHECK(SIMU_COUNTRY,'PCT%','1')
$ LndCov_CHECK(SIMU_COUNTRY,'OBS_STAT','1')
= (LndCov_CHECK(SIMU_COUNTRY,PRODUCT,'OBS_SIMU','1')/LndCov_CHECK(SIMU_COUNTRY,'OBS_STAT','1')
-1) *100 ;
LndCov_CHECK(SIMU_COUNTRY,'PCT%','1')
$ (abs(LndCov_CHECK(SIMU_COUNTRY,'PCT%','1')) lt 0.001)
= 0;
The purpose of this step is to harmonize the crop production in the
base year that is calculated using the new base year crop areas with the
production quantitites from the national level crop produciton
statistics in the base year. The following code will identify and
rescale the crop yields in the CROP_DATA
parameter so that
the calculated crop production levels in the base year (crop yield * new
crop area) match the reported statistics.
PARAMETER
PRODCHECK(ANYREGION,ALLPRODUCT,SOURCE,*)
YIELDCHECK(ANYREGION,ALLPRODUCT,SOURCE,*)
;
PRODCHECK(SIMU_COUNTRY,PRODUCT,'OBS_FAO','1')
= PRODATA_C(SIMU_COUNTRY,PRODUCT,'ProdQ') * 0.001;
PRODCHECK(SIMU_COUNTRY,PRODUCT,'OBS_SIMU','1')
= SUM((ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,InputSys,CROPPRODMAP(CROP,PRODUCT))
$CROP_DATA(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,InputSys,PRODUCT) ,
CROP_DATA(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,InputSys,PRODUCT)
*CROP_DATA(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,InputSys,'BaseArea'));
PRODCHECK(SIMU_COUNTRY,PRODUCT,'PCT%','1')
$ PRODCHECK(SIMU_COUNTRY,PRODUCT,'OBS_FAO','1')
= (PRODCHECK(SIMU_COUNTRY,PRODUCT,'OBS_SIMU','1')/PRODCHECK(SIMU_COUNTRY,PRODUCT,'OBS_FAO','1')
-1) *100 ;
PRODCHECK(SIMU_COUNTRY,PRODUCT,'PCT%','1')
$ (abs(PRODCHECK(SIMU_COUNTRY,PRODUCT,'PCT%','1')) lt 0.001)
= 0;
LOOP(CROPPRODMAP(CROP,PRODUCT),
YIELDCHECK(SIMU_COUNTRY,PRODUCT,SOURCE,'1')
$ ACR_CHECK(SIMU_COUNTRY,CROP,SOURCE)
= PRODCHECK(SIMU_COUNTRY,PRODUCT,SOURCE,'1')
/ ACR_CHECK(SIMU_COUNTRY,CROP,SOURCE) ;
);
YIELDCHECK(SIMU_COUNTRY,CROPS,'PCT%','1')
$ YIELDCHECK(SIMU_COUNTRY,CROPS,'OBS_FAO','1')
= (YIELDCHECK(SIMU_COUNTRY,CROPS,'OBS_SIMU','1')/YIELDCHECK(SIMU_COUNTRY,CROPS,'OBS_FAO','1')
-1) *100;
* yield adjustment to match production in the FAO statistics
CROP_DATA(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,InputSys,PRODUCT)
$(CROP_DATA(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,InputSys,PRODUCT) AND
PRODCHECK(SIMU_COUNTRY,PRODUCT,'OBS_FAO','1') AND
PRODCHECK(SIMU_COUNTRY,PRODUCT,'OBS_SIMU','1') )
= CROP_DATA(SIMU_COUNTRY,ALLCOLROW,ALTICLASS,SLPCLASS,SOILCLASS,AEZCLASS,CROP,InputSys,PRODUCT) *
PRODCHECK(SIMU_COUNTRY,PRODUCT,'OBS_FAO','1')/ PRODCHECK(SIMU_COUNTRY,PRODUCT,'OBS_SIMU','1');
finaldata
subfolder in the model
branch
The final step in the process to add new base year cropland use and
land cover maps to use in GLOBIOM is to send the parameters to the
finaldata subfolder of the model
branch.
This process is relatively straightforward depending on how the data and model branches are linked on the user’s machine.
The CROP_DATA parameter is held in a GDX file. Depending on how the folders are nested on the user’s machine, the code to send the parameter to the appropriate GDX in the finaldat folder can look something like this:
$setLocal X %system.dirSep%
execute_unload '..%X%Model%X%finaldata%X%data_crops.gdx' , CROP_DATA
To write the landcover parameter as a .gms
file with the
appropriate name: data_EPICLandCov_CrpGrsForOagADJ.gms
the
following code should be used;
FILE Resource_DataLandDet_CrpGrsForOagADJ /'..%X%Model%X%finaldata%X%data_EPICLandCov_CrpGrsForOagADJ.gms'/;
PUT Resource_DataLandDet_CrpGrsForOagADJ;
Resource_DataLandDet_CrpGrsForOagADJ.pw = 1000;
Resource_DataLandDet_CrpGrsForOagADJ.lw = 15;
Resource_DataLandDet_CrpGrsForOagADJ.lj = 1;
Resource_DataLandDet_CrpGrsForOagADJ.nw = 15;
Resource_DataLandDet_CrpGrsForOagADJ.nd = 2;
PUT "TABLE LANDCOVER_INIT_CrpGrsForOagADJ(ALLCOUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass,LC_TYPES_EPIC) Initial land cover adjusted for consistency with FAO arable land grass req and forest (1000 ha)" /;
PUT @80;
LOOP(LC_TYPES_EPIC,
PUT LC_TYPES_EPIC.TL; );
PUT /;
Resource_DataLandDet_CrpGrsForOagADJ.lj = 2;
Resource_DataLandDet_CrpGrsForOagADJ.lw = 0;
LOOP((COUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass)
$ SUM(LC_TYPES_EPIC,LANDCOVER_INIT_CrpGrsForOagADJ(COUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass,LC_TYPES_EPIC)),
PUT COUNTRY.TL,'.',ALLCOLROW.TL,'.',AltiClass.TL,'.',SlpClass.TL,'.',SoilClass.TL,'.',AezClass.TL;
PUT @80
LOOP(LC_TYPES_EPIC,
IF(LANDCOVER_INIT_CrpGrsForOagADJ(COUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass,LC_TYPES_EPIC) ne 0,
PUT (LANDCOVER_INIT_CrpGrsForOagADJ(COUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass,LC_TYPES_EPIC)););
IF(LANDCOVER_INIT_CrpGrsForOagADJ(COUNTRY,ALLCOLROW,AltiClass,SlpClass,SoilClass,AezClass,LC_TYPES_EPIC) eq 0,
PUT " ";);
);
PUT /;
);
PUT ";";
Once these ten steps are taken the user can navigate toward the model folder and should run the GLOBIOM model with the new land cover and cropland use maps.