Add biodiversity point dataset to a distribution object (presence-only)
Source:R/add_biodiversity.R
add_biodiversity_poipo.Rd
This function adds a presence-only biodiversity dataset to a distribution object.
Usage
add_biodiversity_poipo(
x,
poipo,
name = NULL,
field_occurrence = "observed",
formula = NULL,
family = "poisson",
link = NULL,
weight = 1,
separate_intercept = TRUE,
docheck = TRUE,
pseudoabsence_settings = NULL,
...
)
# S4 method for class 'BiodiversityDistribution,sf'
add_biodiversity_poipo(
x,
poipo,
name = NULL,
field_occurrence = "observed",
formula = NULL,
family = "poisson",
link = NULL,
weight = 1,
separate_intercept = TRUE,
docheck = TRUE,
pseudoabsence_settings = NULL,
...
)
Arguments
- x
distribution()
(i.e.BiodiversityDistribution
) object.- poipo
A
data.frame
orsf
object of presence-only point occurrences.- name
The name of the biodiversity dataset used as internal identifier.
- field_occurrence
A
numeric
orcharacter
location of biodiversity point records.- formula
A
character
orformula
object to be passed. Default is to use all covariates (if specified).- family
A
character
stating the family to be used (Default:'Poisson'
).- link
A
character
to overwrite the default link function (Default:NULL
).- weight
A
numeric
value acting as a multiplier with regards to any weights used in the modelling. Larger weights indicate higher weighting relative to any other datasets. By default set to1
if only one dataset is added. Avector
is also supported but must be of the same length as"poipo"
. Note: Weights are reformated to the inverse for models with area offsets (e.g. 5 is converted to 1/5).- separate_intercept
A
logical
value stating whether a separate intercept is to be added in shared likelihood models for engines engine_inla, engine_inlabru and engine_stan. Otherwise ignored.- docheck
logical
on whether additional checks should be performed (e.g. intersection tests) (Default:TRUE
).- pseudoabsence_settings
Either
NULL
or apseudoabs_settings()
created settings object.- ...
Other parameters passed down to the object. Normally not used unless described in details.
Value
Adds biodiversity data to distribution object.
Details
This function allows to add presence-only biodiversity records to a distribution ibis.iSDM Presence-only data are usually modelled through an inferential model (see Guisan and Zimmerman, 2000) that relate their occurrence in relation to environmental covariates to a selected sample of 'background' points. The most common approach for estimation and the one supported by this type of dataset are poisson-process models (PPM) in which presence-only points are fitted through a down-weighted Poisson regression. See Renner et al. 2015 for an overview.
References
Guisan A. and Zimmerman N. 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135: 147–186.
Renner, I. W., J. Elith, A. Baddeley, W. Fithian, T. Hastie, S. J. Phillips, G. Popovic, and D. I. Warton. 2015. Point process models for presence-only analysis. Methods in Ecology and Evolution 6:366–379.
See also
Other add_biodiversity:
add_biodiversity_poipa()
,
add_biodiversity_polpa()
,
add_biodiversity_polpo()
Examples
# Load background
background <- terra::rast(system.file('extdata/europegrid_50km.tif',
package='ibis.iSDM',mustWork = TRUE))
# Load virtual species
virtual_points <- sf::st_read(system.file('extdata/input_data.gpkg',
package='ibis.iSDM',mustWork = TRUE),'points',quiet = TRUE)
# Define model
x <- distribution(background) |>
add_biodiversity_poipo(virtual_points, field_occurrence = "Observed")
#> [Setup] 2024-12-13 23:29:06.355393 | Creating distribution object...
#> [Setup] 2024-12-13 23:29:06.356384 | Adding poipo dataset...