Often it can make sense to fit an additional model to get a
grasp on the range of values that "beta" parameters can take. This function
takes an existing BiodiversityDistribution
object and creates
PriorList
object from them. The resulting object can be used to add
for instance priors to a new model.
Usage
get_priors(mod, target_engine, ...)
# S4 method for class 'ANY,character'
get_priors(mod, target_engine, ...)
Arguments
- mod
A fitted
DistributionModel
object. If instead aBiodiversityDistribution
object is passed to this function, it simply returns the contained priors used for estimation (if any).- target_engine
A
character
for which the priors should be created.- ...
Other parameters passed down.
Note
Not all engines support priors in similar ways. See the vignettes and help pages on that topic!
See also
Other prior:
BARTPrior()
,
BARTPriors()
,
BREGPrior()
,
BREGPriors()
,
GDBPrior()
,
GDBPriors()
,
GLMNETPrior()
,
GLMNETPriors()
,
INLAPrior()
,
INLAPriors()
,
STANPrior()
,
STANPriors()
,
XGBPrior()
,
XGBPriors()
,
add_priors()
,
priors()
,
rm_priors()
Examples
if (FALSE) { # \dontrun{
mod <- distribution(background) |>
add_predictors(covariates) |>
add_biodiversity_poipo(points) |>
engine_inlabru() |>
train()
get_priors(mod, target_engine = "BART")
} # }